pandas - 扩展DataFrame的索引,将新行的所有列设置为NaN?

时间:2013-10-01 14:36:23

标签: python pandas

我有时间索引数据:

df2 = pd.DataFrame({ 'day': pd.Series([date(2012, 1, 1), date(2012, 1, 3)]), 'b' : pd.Series([0.22, 0.3]) })
df2 = df2.set_index('day')
df2
               b
 day             
2012-01-01  0.22
2012-01-03  0.30

扩展此数据框的最佳方法是什么,以便它在2012年1月的每一天都有一行(比如说),其中所有列都设置为NaN(此处仅b)其中我们没有数据?

所以期望的结果是:

               b
 day             
2012-01-01  0.22
2012-01-02   NaN
2012-01-03  0.30
2012-01-04   NaN
...
2012-01-31   NaN

非常感谢!

6 个答案:

答案 0 :(得分:22)

使用此:

ix = pd.DatetimeIndex(start=date(2012, 1, 1), end=date(2012, 1, 31), freq='D')
df2.reindex(ix)

给出了:

               b
2012-01-01  0.22
2012-01-02   NaN
2012-01-03  0.30
2012-01-04   NaN
2012-01-05   NaN
[...]
2012-01-29   NaN
2012-01-30   NaN
2012-01-31   NaN

答案 1 :(得分:3)

您可以按频率重新标记过往日,而不指定fill_method参数缺失值将根据需要填充NaN

df3 = df2.asfreq('D')
df3

Out[16]:
               b
2012-01-01  0.22
2012-01-02   NaN
2012-01-03  0.30

要回答你的第二部分,我现在想不出更优雅的方式:

df3 = DataFrame({ 'day': Series([date(2012, 1, 4), date(2012, 1, 31)])})
df3.set_index('day',inplace=True)
merged = df2.append(df3)
merged = merged.asfreq('D')
merged


Out[46]:
               b
2012-01-01  0.22
2012-01-02   NaN
2012-01-03  0.30
2012-01-04   NaN
2012-01-05   NaN
2012-01-06   NaN
2012-01-07   NaN
2012-01-08   NaN
2012-01-09   NaN
2012-01-10   NaN
2012-01-11   NaN
2012-01-12   NaN
2012-01-13   NaN
2012-01-14   NaN
2012-01-15   NaN
2012-01-16   NaN
2012-01-17   NaN
2012-01-18   NaN
2012-01-19   NaN
2012-01-20   NaN
2012-01-21   NaN
2012-01-22   NaN
2012-01-23   NaN
2012-01-24   NaN
2012-01-25   NaN
2012-01-26   NaN
2012-01-27   NaN
2012-01-28   NaN
2012-01-29   NaN
2012-01-30   NaN
2012-01-31   NaN

这构建了第二个时间序列,然后我们只是追加并像以前一样调用asfreq('D')

答案 2 :(得分:2)

这是另一种选择: 首先在您想要的最后一天添加NaN记录,然后重新取样。这样重新采样将为您填写缺失的日期。

起始帧:

import pandas as pd
import numpy as np
from datetime import date

df2 = pd.DataFrame({ 'day': pd.Series([date(2012, 1, 1), date(2012, 1, 3)]), 'b' : pd.Series([0.22, 0.3]) })
df2= df2.set_index('day')
df2

Out:
                  b
    day 
    2012-01-01  0.22
    2012-01-03  0.30

填充框架:

df2 = df2.set_value(date(2012,1,31),'b',np.float('nan'))
df2.asfreq('D')

Out:
                b
    day 
    2012-01-01  0.22
    2012-01-02  NaN
    2012-01-03  0.30
    2012-01-04  NaN
    2012-01-05  NaN
    2012-01-06  NaN
    2012-01-07  NaN
    2012-01-08  NaN
    2012-01-09  NaN
    2012-01-10  NaN
    2012-01-11  NaN
    2012-01-12  NaN
    2012-01-13  NaN
    2012-01-14  NaN
    2012-01-15  NaN
    2012-01-16  NaN
    2012-01-17  NaN
    2012-01-18  NaN
    2012-01-19  NaN
    2012-01-20  NaN
    2012-01-21  NaN
    2012-01-22  NaN
    2012-01-23  NaN
    2012-01-24  NaN
    2012-01-25  NaN
    2012-01-26  NaN
    2012-01-27  NaN
    2012-01-28  NaN
    2012-01-29  NaN
    2012-01-30  NaN
    2012-01-31  NaN

答案 3 :(得分:1)

Mark的答案似乎不再适用于熊猫1.1.1。

但是,使用相同的思想,可以实现以下目的:

from datetime import datetime
import pandas as pd


# get start and desired end dates
first_date = df['date'].min()
today = datetime.today()

# set index
df.set_index('date', inplace=True)

# and here is were the magic happens
idx = pd.date_range(first_date, today, freq='D')
df = df.reindex(idx)

编辑:刚刚发现这个确切的用例在文档中:

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.reindex.html#pandas.DataFrame.reindex

答案 4 :(得分:0)

并不是完全正确的问题,因为您在这里知道第二个索引是一月份的全天,但是假设您有另一个数据框df1的另一个索引,它可能是不相交的,并且频率随机。然后,您可以执行以下操作:

ix = pd.DatetimeIndex(list(df2.index) + list(df1.index)).unique().sort_values()
df2.reindex(ix)

将索引转换为列表可以自然地创建一个更长的列表。

答案 5 :(得分:0)

def extendframe(df, ndays):
    """
    (df, ndays) -> df that is padded by ndays in beginning and end
    """
    ixd = df.index - datetime.timedelta(ndays)
    ixu = df.index + datetime.timedelta(ndays)
    ixx = df.index.union(ixd.union(ixu))
    df_ = df.reindex(ixx)
    return df_