Matplotlib重叠注释/文本

时间:2013-09-29 02:04:43

标签: python matplotlib annotate

我正在尝试停止在我的图表中重叠注释文本。接受Matplotlib overlapping annotations的答案中建议的方法看起来非常有希望,但是对于条形图而言。我无法将“轴”方法转换为我想要做的事情,而且我不明白文本是如何排列的。

import sys
import matplotlib.pyplot as plt


# start new plot
plt.clf()
plt.xlabel("Proportional Euclidean Distance")
plt.ylabel("Percentage Timewindows Attended")
plt.title("Test plot")

together = [(0, 1.0, 0.4), (25, 1.0127692669427917, 0.41), (50, 1.016404709797609, 0.41), (75, 1.1043426359673716, 0.42), (100, 1.1610446924342996, 0.44), (125, 1.1685687930691457, 0.43), (150, 1.3486407784550272, 0.45), (250, 1.4013999168008104, 0.45)]
together.sort()

for x,y,z in together:
    plt.annotate(str(x), xy=(y, z), size=8)

eucs = [y for (x,y,z) in together]
covers = [z for (x,y,z) in together]

p1 = plt.plot(eucs,covers,color="black", alpha=0.5)

plt.savefig("test.png")

图片(如果可行)可以找到here(此代码):

image1

here(更复杂):

image2

4 个答案:

答案 0 :(得分:82)

我只想在这里发布另一个解决方案,我写的一个小型库来实现这类东西:https://github.com/Phlya/adjustText 这里可以看到这个过程的一个例子: enter image description here

以下是示例图片:

import matplotlib.pyplot as plt
from adjustText import adjust_text
import numpy as np
together = [(0, 1.0, 0.4), (25, 1.0127692669427917, 0.41), (50, 1.016404709797609, 0.41), (75, 1.1043426359673716, 0.42), (100, 1.1610446924342996, 0.44), (125, 1.1685687930691457, 0.43), (150, 1.3486407784550272, 0.45), (250, 1.4013999168008104, 0.45)]
together.sort()

text = [x for (x,y,z) in together]
eucs = [y for (x,y,z) in together]
covers = [z for (x,y,z) in together]

p1 = plt.plot(eucs,covers,color="black", alpha=0.5)
texts = []
for x, y, s in zip(eucs, covers, text):
    texts.append(plt.text(x, y, s))

plt.xlabel("Proportional Euclidean Distance")
plt.ylabel("Percentage Timewindows Attended")
plt.title("Test plot")
adjust_text(texts, only_move='y', arrowprops=dict(arrowstyle="->", color='r', lw=0.5))
plt.show()

enter image description here

如果你想要一个完美的身材,你可以摆弄一下。首先,让我们也让文本排斥 - 为此我们只使用scipy.interpolate.interp1d创建大量虚拟点。

我们希望避免沿着x轴移动标签,因为,为什么不这样做才能用于说明目的。为此,我们使用参数only_move={'points':'y', 'text':'y'}。如果我们只想在它们与文本重叠的情况下沿x轴移动它们,请使用move_only={'points':'y', 'text':'xy'}。同样在开始时,函数选择文本相对于其原始点的最佳对齐,因此我们也希望它也沿y轴发生,因此autoalign='y'。我们还减少了点的排斥力,以避免由于我们人为避免线条而导致文本飞得太远。一起来:

from scipy import interpolate
p1 = plt.plot(eucs,covers,color="black", alpha=0.5)
texts = []
for x, y, s in zip(eucs, covers, text):
    texts.append(plt.text(x, y, s))

f = interpolate.interp1d(eucs, covers)
x = np.arange(min(eucs), max(eucs), 0.0005)
y = f(x)    

plt.xlabel("Proportional Euclidean Distance")
plt.ylabel("Percentage Timewindows Attended")
plt.title("Test plot")
adjust_text(texts, x=x, y=y, autoalign='y',
            only_move={'points':'y', 'text':'y'}, force_points=0.15,
            arrowprops=dict(arrowstyle="->", color='r', lw=0.5))
plt.show()

enter image description here

答案 1 :(得分:4)

有很多摆弄,我想通了。对原始解决方案的再次归功于Matplotlib overlapping annotations的答案。

但我不知道如何找到文本的确切宽度和高度。如果有人知道,请发布改进(或使用该方法添加评论)。

import sys
import matplotlib
import matplotlib.pyplot as plt
import numpy as np

def get_text_positions(text, x_data, y_data, txt_width, txt_height):
    a = zip(y_data, x_data)
    text_positions = list(y_data)
    for index, (y, x) in enumerate(a):
        local_text_positions = [i for i in a if i[0] > (y - txt_height) 
                            and (abs(i[1] - x) < txt_width * 2) and i != (y,x)]
        if local_text_positions:
            sorted_ltp = sorted(local_text_positions)
            if abs(sorted_ltp[0][0] - y) < txt_height: #True == collision
                differ = np.diff(sorted_ltp, axis=0)
                a[index] = (sorted_ltp[-1][0] + txt_height, a[index][1])
                text_positions[index] = sorted_ltp[-1][0] + txt_height*1.01
                for k, (j, m) in enumerate(differ):
                    #j is the vertical distance between words
                    if j > txt_height * 2: #if True then room to fit a word in
                        a[index] = (sorted_ltp[k][0] + txt_height, a[index][1])
                        text_positions[index] = sorted_ltp[k][0] + txt_height
                        break
    return text_positions

def text_plotter(text, x_data, y_data, text_positions, txt_width,txt_height):
    for z,x,y,t in zip(text, x_data, y_data, text_positions):
        plt.annotate(str(z), xy=(x-txt_width/2, t), size=12)
        if y != t:
            plt.arrow(x, t,0,y-t, color='red',alpha=0.3, width=txt_width*0.1, 
                head_width=txt_width, head_length=txt_height*0.5, 
                zorder=0,length_includes_head=True)

# start new plot
plt.clf()
plt.xlabel("Proportional Euclidean Distance")
plt.ylabel("Percentage Timewindows Attended")
plt.title("Test plot")

together = [(0, 1.0, 0.4), (25, 1.0127692669427917, 0.41), (50, 1.016404709797609, 0.41), (75, 1.1043426359673716, 0.42), (100, 1.1610446924342996, 0.44), (125, 1.1685687930691457, 0.43), (150, 1.3486407784550272, 0.45), (250, 1.4013999168008104, 0.45)]
together.sort()

text = [x for (x,y,z) in together]
eucs = [y for (x,y,z) in together]
covers = [z for (x,y,z) in together]

p1 = plt.plot(eucs,covers,color="black", alpha=0.5)

txt_height = 0.0037*(plt.ylim()[1] - plt.ylim()[0])
txt_width = 0.018*(plt.xlim()[1] - plt.xlim()[0])

text_positions = get_text_positions(text, eucs, covers, txt_width, txt_height)

text_plotter(text, eucs, covers, text_positions, txt_width, txt_height)

plt.savefig("test.png")
plt.show()

创建http://i.stack.imgur.com/xiTeU.png enter image description here

更复杂的图形现在是http://i.stack.imgur.com/KJeYW.png,仍然有点不确定但更好! enter image description here

答案 2 :(得分:2)

此处的简便解决方案:(适用于Jupyter笔记本电脑)

%matplotlib notebook
import mplcursors

plt.plot.scatter(y=YOUR_Y_DATA, x =YOUR_X_DATA)


mplcursors.cursor(multiple = True).connect(
    "add", lambda sel: sel.annotation.set_text(
          YOUR_ANOTATION_LIST[sel.target.index]
))

右键单击一个点以显示其注释。

左键单击注释以关闭

右键单击并拖动注释以移动

enter image description here

答案 3 :(得分:0)

只是想添加我在代码中使用的另一个解决方案。

  1. 获取 y 轴刻度并找出任意 2 个连续刻度之间的差异 (y_diff)。
  2. 通过将图表的每个“y”元素添加到列表来注释第一行。
  3. 在注释第二项时,检查上一个图形 (prev_y) 对相同“x”的注释是否落在相同的 y 轴刻度范围 (curr_y) 内。
  4. 仅在 (prev_y - curr_y) > (y_diff /3) 时才进行注释。您可以将差值除以图形大小和注释字体大小所需的数量。
 annotation_y_values = []
    for i, j in zip(x, df[df.columns[0]]):
        annotation_y_values.append(j)
        axs.annotate(str(j), xy=(i, j), color="black")
 count = 0
 y_ticks = axs.get_yticks()
 y_diff = y_ticks[-1] - y_ticks[-2]
 for i, j in zip(x, df1[df1.columns[0]]):
        df_annotate_value = annotation_y_values[count]
        current_y_val = j
        diff = df_annotate_value - current_y_val
        if diff > (y_diff/3):
            axs.annotate(str(j), xy=(i, j), color="black", size=8)
        count = count + 1