我正在尝试在http://www.spoj.com/problems/FASTFLOW/
上解决此问题我认为dinic的算法适用于这个问题。但它在O(E.V ^ 2)时间内运行,在最坏的情况下这对于这个问题来说太慢了。有关不同算法的建议或改进此算法的运行时间吗?
编辑:我正在实施dinic算法。显然,它包含一些错误......任何人都可以提供一些测试用例或帮助调试程序逻辑。
//#define DEBUG //comment when you have to disable all debug macros.
#define NDEBUG //comment when all assert statements have to be disabled.
#include <iostream>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <bitset>
#include <climits>
#include <ctime>
#include <algorithm>
#include <functional>
#include <stack>
#include <queue>
#include <list>
#include <deque>
#include <sys/time.h>
#include <iomanip>
#include <cstdarg>
#include <utility> //std::pair
#include <cassert>
#define tr(c,i) for(typeof(c.begin()) i = (c).begin(); i != (c).end(); i++)
#define present(c,x) ((c).find(x) != (c).end())
#define all(x) x.begin(), x.end()
#define pb push_back
#define mp make_pair
#define log2(x) (log(x)/log(2))
#define ARRAY_SIZE(arr) (1[&arr]-arr)
#define INDEX(arr,elem) (lower_bound(all(arr),elem)-arr.begin())
#define lld long long int
#define MOD 1000000007
#define gcd __gcd
#define equals(a,b) (a.compareTo(b)==0) //for strings only
using namespace std;
#ifdef DEBUG
#define debug(args...) {dbg,args; cerr<<endl;}
#else
#define debug(args...) // Just strip off all debug tokens
#endif
struct debugger
{
template<typename T> debugger& operator , (const T& v)
{
cerr<<v<<" ";
return *this;
}
}dbg;
/**********************************MAIN CODE***************************************************/
//runs in O(V^2E) time.
//might consider using a 1-d array of size V*V for large values of V
vector<vector<lld> > flow, capacity, level_graph;
lld V;
vector<lld> *adj, *level_adj;
void init(lld v)
{
adj=new vector<lld>[v+1];
level_adj=new vector<lld>[v+1];
V=v;
flow.resize(V+1);
capacity.resize(V+1);
level_graph.resize(V+1);
for(lld i=0;i<=V;i++)
flow[i].resize(V+1), capacity[i].resize(V+1), level_graph[i].resize(V+1);
}
void add_edge(lld u, lld v, lld uv, lld vu=0)
{
capacity[u][v]=uv;
capacity[v][u]=vu;
adj[u].push_back(v);
flow[u][v]=uv; //will store the present capacity. facility for the residual graph
flow[v][u]=vu;
if(vu) adj[v].push_back(u);
}
void update_residual_graph(lld source, lld destination, lld *parent) //push augment flow in the residual graph and modify the latter.
{
lld i=destination, aug=LLONG_MAX;
while(parent[i]!=-2)
{
//debug(i);
aug=min(aug,flow[parent[i]][i]);
i=parent[i];
}
i=destination;
while(parent[i]!=-2)
{
flow[parent[i]][i]-=aug;
flow[i][parent[i]]=capacity[parent[i]][i]-flow[parent[i]][i];
i=parent[i];
}
}
bool DFS(lld source, lld destination)
{
stack<lld> state;
bool visited[V+1], present;
lld parent[V+1],t;
memset(visited, false, sizeof(visited));
memset(parent, -1, sizeof(parent));
parent[source]=-2;
state.push(source);
visited[source]=true;
while(!state.empty())
{
t=state.top();
present=false;
for(vector<lld>::iterator it=level_adj[t].begin(); it!=level_adj[t].end();it++)
{
parent[*it]=t;
if(!visited[*it] && level_graph[t][*it])
{
present=true;
state.push(*it);
visited[*it]=true;
if(*it==destination)
update_residual_graph(source,destination,parent); //update residual graph
}
}
if(!present)
state.pop();
}
return parent[destination]!=-1;
}
bool BFS(lld source, lld destination)
{
//create level graph usign BFS
fill(level_graph.begin(), level_graph.end(), vector<lld>(V+1,-1));
lld i,j;
for(i=1;i<=V;i++)
level_adj[i].clear();
queue<lld> state;
lld level[V+1],t; //record of minimum distance from source
memset(level,-1, sizeof(level));
state.push(source);
level[source]=0;
while(!state.empty())
{
t=state.front();
state.pop();
for(vector<lld>::iterator it=adj[t].begin();it!=adj[t].end();it++)
{
if((level[*it]==-1 && flow[t][*it]) || (level[*it]==level[t]+1))
{
level_graph[t][*it]=flow[t][*it];
level_adj[t].push_back(*it);
level[*it]=level[t]+1;
state.push(*it);
}
}
}
if(level[destination]==-1)
return false;
//call DFS and update the residual graph
return DFS(source,destination);
}
lld maximum_flow(lld source, lld destination)
{
while(BFS(source,destination));
lld max_flow=0;
for(vector<lld>::iterator it=adj[source].begin(); it!=adj[source].end(); it++)
max_flow+=flow[*it][source];
return max_flow;
}
int main()
{
lld e,u,v,n,c;
//cout<<"V:"<<endl;
cin>>n>>e;
init(n);
while(e--)cin>>u>>v>>c, add_edge(u,v,c);
cout<<maximum_flow(1,n)<<endl;
}
答案 0 :(得分:1)
Cherkassky - Goldberg提出的具有全局重新标记启发式的push-relabel算法应该足够了(每m步,用广度优先搜索重新计算标签)。启发式算法的实际运行时间远远大于最坏情况下的立方界限。 (您也可以进行间隙重新标记,但实现起来比较棘手,可能对此应用程序来说并不是必需的。)