我在这里有一个星型模式,我正在查询事实表,并希望加入一个非常小的维度表。我无法解释以下内容:
EXPLAIN ANALYZE SELECT
COUNT(impression_id), imp.os_id
FROM bi.impressions imp
GROUP BY imp.os_id;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------
HashAggregate (cost=868719.08..868719.24 rows=16 width=10) (actual time=12559.462..12559.466 rows=26 loops=1)
-> Seq Scan on impressions imp (cost=0.00..690306.72 rows=35682472 width=10) (actual time=0.009..3030.093 rows=35682474 loops=1)
Total runtime: 12559.523 ms
(3 rows)
这需要大约12600毫秒,但当然没有连接数据,所以我无法将imp.os_id“解析”为有意义的东西,所以我添加了一个连接:
EXPLAIN ANALYZE SELECT
COUNT(impression_id), imp.os_id, os.os_desc
FROM bi.impressions imp, bi.os_desc os
WHERE imp.os_id=os.os_id
GROUP BY imp.os_id, os.os_desc;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------
HashAggregate (cost=1448560.83..1448564.99 rows=416 width=22) (actual time=25565.124..25565.127 rows=26 loops=1)
-> Hash Join (cost=1.58..1180942.29 rows=35682472 width=22) (actual time=0.046..15157.684 rows=35682474 loops=1)
Hash Cond: (imp.os_id = os.os_id)
-> Seq Scan on impressions imp (cost=0.00..690306.72 rows=35682472 width=10) (actual time=0.007..3705.647 rows=35682474 loops=1)
-> Hash (cost=1.26..1.26 rows=26 width=14) (actual time=0.028..0.028 rows=26 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 2kB
-> Seq Scan on os_desc os (cost=0.00..1.26 rows=26 width=14) (actual time=0.003..0.010 rows=26 loops=1)
Total runtime: 25565.199 ms
(8 rows)
这有效地使我的查询的执行时间加倍。我的问题是,我从画面中遗漏了什么?我认为这么小的查找并没有造成查询执行时间的巨大差异。
答案 0 :(得分:4)
用(推荐)显式ANSI JOIN语法重写:
SELECT COUNT(impression_id), imp.os_id, os.os_desc
FROM bi.impressions imp
JOIN bi.os_desc os ON os.os_id = imp.os_id
GROUP BY imp.os_id, os.os_desc;
首先,如果在展示中的每一行的os_desc中找到多于或少于一个匹配项,则第二个查询可能错误。
如果os_id
上有外键约束,则可以排除这种情况,这可以保证参照完整性,并在{NOT NULL
约束 { {1}}。
如果是这样,在第一步中,简化为:
bi.impressions.os_id
SELECT COUNT(*) AS ct, imp.os_id, os.os_desc
FROM bi.impressions imp
JOIN bi.os_desc os USING (os_id)
GROUP BY imp.os_id, os.os_desc;
略快于count(*)
。并为计数添加列别名
更快,但是:
count(column)
先分组,稍后加入。更多细节:
Aggregate a single column in query with many columns
PostgreSQL - order by an array
答案 1 :(得分:1)
HashAggregate (cost=868719.08..868719.24 rows=16 width=10)
HashAggregate (cost=1448560.83..1448564.99 rows=416 width=22)
嗯,宽度从10到22是倍增。也许你应该在分组后而不是之前加入?
答案 2 :(得分:1)
以下查询可在不增加查询执行时间的情况下解决问题。问题仍然存在,为什么执行时间会随着添加非常简单的连接而显着增加,但它可能是Postgres特定的问题,并且在该领域具有丰富经验的人最终可能会回答它。
WITH
OSES AS (SELECT os_id,os_desc from bi.os_desc)
SELECT
COUNT(impression_id) as imp_count,
os_desc FROM bi.impressions imp,
OSES os
WHERE
os.os_id=imp.os_id
GROUP BY os_desc
ORDER BY imp_count;