使用C和并行化在R中快速相关

时间:2013-09-23 16:59:19

标签: c r correlation snowfall

我今天的项目是使用我拥有的基本技能在R中编写一个快速关联例程。我必须找到近400个变量之间的相关性,每个变量有近百万个观测值(即大小为p = 1MM行且n = 400个色列的矩阵)。

对于1MM行,R的原生相关函数需要近2分钟,每个变量需要200个观测值。我没有每列运行400次观察,但我的猜测是需要将近8分钟。我完成它的时间不到30秒。

因此,我想做的事情。

1 - 在C中编写一个简单的相关函数,并将其平行应用于块中(见下文)。

2 - 块 - 将相关矩阵分成三个块(左上方的大小为K * K,右下方的大小(pK)(pK),右上方的矩形矩阵为K (PK))。这涵盖了相关矩阵corr中的所有单元格,因为我只需要上三角形。

3 - 使用降雪并行地通过.C调用运行C函数。

n = 100
p = 10
X = matrix(rnorm(n*p), nrow=n, ncol=p)
corr = matrix(0, nrow=p, ncol=p)

# calculation of column-wise mean and sd to pass to corr function
mu = colMeans(X)
sd = sapply(1:dim(X)[2], function(x) sd(X[,x]))

# setting up submatrix row and column ranges
K = as.integer(p/2)

RowRange = list()
ColRange = list()
RowRange[[1]] = c(0, K)
ColRange[[1]] = c(0, K)

RowRange[[2]] = c(0, K)
ColRange[[2]] = c(K, p+1)

RowRange[[3]] = c(K, p+1)
ColRange[[3]] = c(K, p+1)

# METHOD 1. NOT PARALLEL
########################
# function to calculate correlation on submatrices
BigCorr <- function(x){
  Rows = RowRange[[x]]
  Cols = ColRange[[x]]    
  return(.C("rCorrelationWrapper2", as.matrix(X), as.integer(dim(X)), 
            as.double(mu), as.double(sd), 
            as.integer(Rows), as.integer(Cols), 
            as.matrix(corr)))
}

res = list()
for(i in 1:3){
  res[[i]] = BigCorr(i)
}

# METHOD 2
########################
BigCorr <- function(x){
    Rows = RowRange[[x]]
    Cols = ColRange[[x]]    
    dyn.load("./rCorrelation.so")
    return(.C("rCorrelationWrapper2", as.matrix(X), as.integer(dim(X)), 
          as.double(mu), as.double(sd), 
          as.integer(Rows), as.integer(Cols), 
          as.matrix(corr)))
}

# parallelization setup
NUM_CPU = 4
library('snowfall')
sfSetMaxCPUs() # maximum cpu processing
sfInit(parallel=TRUE,cpus=NUM_CPU) # init parallel procs
sfExport("X", "RowRange", "ColRange", "sd", "mu", "corr")  
res = sfLapply(1:3, BigCorr)
sfStop()  

这是我的问题:

对于方法1,它可以工作,但不是我想要的方式。我相信,当我通过corr矩阵时,我传递一个地址,C将在源头进行更改。

# Output of METHOD 1
> res[[1]][[7]]
      [,1]      [,2]        [,3]       [,4]         [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1 0.1040506 -0.01003125 0.23716384 -0.088246793    0    0    0    0     0
 [2,]    0 1.0000000 -0.09795989 0.11274508  0.025754150    0    0    0    0     0
 [3,]    0 0.0000000  1.00000000 0.09221441  0.052923520    0    0    0    0     0
 [4,]    0 0.0000000  0.00000000 1.00000000 -0.000449975    0    0    0    0     0
 [5,]    0 0.0000000  0.00000000 0.00000000  1.000000000    0    0    0    0     0
 [6,]    0 0.0000000  0.00000000 0.00000000  0.000000000    0    0    0    0     0
 [7,]    0 0.0000000  0.00000000 0.00000000  0.000000000    0    0    0    0     0
 [8,]    0 0.0000000  0.00000000 0.00000000  0.000000000    0    0    0    0     0
 [9,]    0 0.0000000  0.00000000 0.00000000  0.000000000    0    0    0    0     0
[10,]    0 0.0000000  0.00000000 0.00000000  0.000000000    0    0    0    0     0
> res[[2]][[7]]
      [,1] [,2] [,3] [,4] [,5]        [,6]        [,7]        [,8]       [,9]       [,10]
 [1,]    0    0    0    0    0 -0.02261175 -0.23398448 -0.02382690 -0.1447913 -0.09668318
 [2,]    0    0    0    0    0 -0.03439707  0.04580888  0.13229376  0.1354754 -0.03376527
 [3,]    0    0    0    0    0  0.10360907 -0.05490361 -0.01237932 -0.1657041  0.08123683
 [4,]    0    0    0    0    0  0.18259522 -0.23849323 -0.15928474  0.1648969 -0.05005328
 [5,]    0    0    0    0    0 -0.01012952 -0.03482429  0.14680301 -0.1112500  0.02801333
 [6,]    0    0    0    0    0  0.00000000  0.00000000  0.00000000  0.0000000  0.00000000
 [7,]    0    0    0    0    0  0.00000000  0.00000000  0.00000000  0.0000000  0.00000000
 [8,]    0    0    0    0    0  0.00000000  0.00000000  0.00000000  0.0000000  0.00000000
 [9,]    0    0    0    0    0  0.00000000  0.00000000  0.00000000  0.0000000  0.00000000
[10,]    0    0    0    0    0  0.00000000  0.00000000  0.00000000  0.0000000  0.00000000
> res[[3]][[7]]
      [,1] [,2] [,3] [,4] [,5] [,6]       [,7]        [,8]        [,9]       [,10]
 [1,]    0    0    0    0    0    0 0.00000000  0.00000000  0.00000000  0.00000000
 [2,]    0    0    0    0    0    0 0.00000000  0.00000000  0.00000000  0.00000000
 [3,]    0    0    0    0    0    0 0.00000000  0.00000000  0.00000000  0.00000000
 [4,]    0    0    0    0    0    0 0.00000000  0.00000000  0.00000000  0.00000000
 [5,]    0    0    0    0    0    0 0.00000000  0.00000000  0.00000000  0.00000000
 [6,]    0    0    0    0    0    1 0.03234195 -0.03488812 -0.18570151  0.14064640
 [7,]    0    0    0    0    0    0 1.00000000  0.03449697 -0.06765511 -0.15057244
 [8,]    0    0    0    0    0    0 0.00000000  1.00000000 -0.03426464  0.10030619
 [9,]    0    0    0    0    0    0 0.00000000  0.00000000  1.00000000 -0.08720512
[10,]    0    0    0    0    0    0 0.00000000  0.00000000  0.00000000  1.00000000

但原始corr矩阵保持不变:

> corr
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    0    0    0    0    0    0    0    0    0     0
 [2,]    0    0    0    0    0    0    0    0    0     0
 [3,]    0    0    0    0    0    0    0    0    0     0
 [4,]    0    0    0    0    0    0    0    0    0     0
 [5,]    0    0    0    0    0    0    0    0    0     0
 [6,]    0    0    0    0    0    0    0    0    0     0
 [7,]    0    0    0    0    0    0    0    0    0     0
 [8,]    0    0    0    0    0    0    0    0    0     0
 [9,]    0    0    0    0    0    0    0    0    0     0
[10,]    0    0    0    0    0    0    0    0    0     0

问题#1:有没有办法确保C函数在源头更改corr的值?我仍然可以合并这三个来创建一个上三角相关矩阵,但我想知道是否可以在源头进行更改。注意:这不能帮助我实现快速关联,因为我只是在运行一个循环。

问题2:对于方法2,如何在init步骤中为每个核心上的并行作业将共享对象加载到每个核心(而不是我如何完成)?

问题3:这个错误是什么意思?我需要一些指示,我很乐意自己调试。

问题#4:在不到30秒的时间内,是否有一种快速计算矩阵1MM乘以400的相关性?

当我运行METHOD 2时,我收到以下错误:

R(6107) malloc: *** error for object 0x100664df8: incorrect checksum for freed object - object was probably modified after being freed.
*** set a breakpoint in malloc_error_break to debug
Error in unserialize(node$con) : error reading from connection

下面附有我的普通C代码用于关联:

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <stddef.h>
#include <R.h> // to show errors in R


double calcMean (double *x, int n);
double calcStdev (double *x, double mu, int n);
double calcCov(double *x, double *y, int n, double xmu, double ymu);        

void rCorrelationWrapper2 ( double *X, int *dim, double *mu, double *sd, int *RowRange, int *ColRange, double *corr) {

    int i, j, n = dim[0], p = dim[1];
    int RowStart = RowRange[0], RowEnd = RowRange[1], ColStart = ColRange[0], ColEnd = ColRange[1];
    double xyCov;

    Rprintf("\n p: %d, %d <= row < %d, %d <= col < %d", p, RowStart, RowEnd, ColStart, ColEnd);

    if(RowStart==ColStart && RowEnd==ColEnd){
        for(i=RowStart; i<RowEnd; i++){
            for(j=i; j<ColEnd; j++){
                Rprintf("\n i: %d, j: %d, p: %d", i, j, p);
                xyCov = calcCov(X + i*n, X + j*n, n, mu[i], mu[j]);
                *(corr + j*p + i) = xyCov/(sd[i]*sd[j]);
            }
        }
    } else {
        for(i=RowStart; i<RowEnd; i++){
            for (j=ColStart; j<ColEnd; j++){
                xyCov = calcCov(X + i*n, X + j*n, n, mu[i], mu[j]);
                *(corr + j*p + i) = xyCov/(sd[i]*sd[j]);
            }
        }
    }
}


// function to calculate mean

double calcMean (double *x, int n){
    double s = 0;
    int i;
    for(i=0; i<n; i++){     
        s = s + *(x+i);
    }
    return(s/n);
}

// function to calculate standard devation

double calcStdev (double *x, double mu, int n){
    double t, sd = 0;
    int i;

    for (i=0; i<n; i++){
        t = *(x + i) - mu;
        sd = sd + t*t;
    }    
    return(sqrt(sd/(n-1)));
}


// function to calculate covariance

double calcCov(double *x, double *y, int n, double xmu, double ymu){
    double s = 0;
    int i;

    for(i=0; i<n; i++){
        s = s + (*(x+i)-xmu)*(*(y+i)-ymu);
    }
    return(s/(n-1));
}

2 个答案:

答案 0 :(得分:11)

使用快速BLAS(通过Revolution R或Goto BLAS),您可以在R中快速计算所有这些相关性,而无需编写任何C代码。 在我的第一代英特尔i7 PC上需要16秒:

n = 400;
m = 1e6;

# Generate data
mat = matrix(runif(m*n),n,m);
# Start timer
tic = proc.time();
# Center each variable
mat = mat - rowMeans(mat);
# Standardize each variable
mat = mat / sqrt(rowSums(mat^2));   
# Calculate correlations
cr = tcrossprod(mat);
# Stop timer
toc = proc.time();

# Show the results and the time
show(cr[1:4,1:4]);
show(toc-tic)

上面的R代码报告了以下时间:

 user  system elapsed 
31.82    1.98   15.74 

我在MatrixEQTL包中使用此方法 http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/

有关R的各种BLAS选项的更多信息,请访问:
http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/runit.html#large

答案 1 :(得分:3)

一些事情。

首先,如果您使用.C接口进行外部调用,则默认情况下它会复制所有参数。这就是为什么对象corr没有被修改。如果你想避免这种情况,那么你必须在.C调用中设置DUP = false。但是,通常使用.C来修改现有的R对象并不是首选的方法。相反,您可能想要创建一个新数组并允许外部调用填充它,就像这样。

corr<-.C("rCorrelationWrapper2", as.double(X), as.integer(dim(X)), 
        as.double(mu), as.double(sd), 
        as.integer(Rows), as.integer(Cols), 
        result=double(p*q))$result
corr<-array(corr,c(p,q))

其次,就编写快速相关函数而言,首先应该尝试使用高效的BLAS实现来编译R.这不仅会使您的相关函数更快,而且会使您的所有线性代数更快。好的免费候选人是来自AMD或ATLAS的ACML。其中任何一个都能够非常快速地计算相关矩阵。加速不仅仅是并行化 - 这些库对于缓存使用情况也非常聪明,并且在汇编级别进行了优化,因此即使只有一个核心,您也会看到很大的改进。 http://developer.amd.com/tools-and-sdks/cpu-development/amd-core-math-library-acml/ http://math-atlas.sourceforge.net/

最后,如果你真的想编写自己的C代码,我建议使用openMP自动将计算分配到不同的线程中,而不是手工完成。但是,对于像矩阵乘法这样基本的东西,使用可用的优化库可能会更好。