我正在使用numpy和scipy来处理用CCD相机拍摄的许多图像。这些图像具有许多具有非常大(或小)值的热(和死)像素。这些会干扰其他图像处理,因此需要将其删除。不幸的是,虽然一些像素卡在0或255并且在所有图像中总是处于相同的值,但是有些像素暂时停留在其他值上几分钟(数据跨度)很长时间)。
我想知道是否有一种识别(和删除)已在python中实现的热像素的方法。如果没有,我想知道这样做的有效方法是什么。通过将它们与相邻像素进行比较,相对容易识别热/坏像素。我可以看到编写一个查看每个像素的循环,将其值与其最近的8个邻居的值进行比较。或者,使用某种卷积来生成更平滑的图像然后从包含热像素的图像中减去这种图像似乎更好,这使得它们更容易识别。
我在下面的代码中尝试了这种“模糊方法”,它运行正常,但我怀疑它是最快的。此外,它在图像的边缘变得混乱(可能因为gaussian_filter函数正在进行卷积并且卷积在边缘附近变得奇怪)。那么,有更好的方法来解决这个问题吗?
示例代码:
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage
plt.figure(figsize=(8,4))
ax1 = plt.subplot(121)
ax2 = plt.subplot(122)
#make a sample image
x = np.linspace(-5,5,200)
X,Y = np.meshgrid(x,x)
Z = 255*np.cos(np.sqrt(x**2 + Y**2))**2
for i in range(0,11):
#Add some hot pixels
Z[np.random.randint(low=0,high=199),np.random.randint(low=0,high=199)]= np.random.randint(low=200,high=255)
#and dead pixels
Z[np.random.randint(low=0,high=199),np.random.randint(low=0,high=199)]= np.random.randint(low=0,high=10)
#Then plot it
ax1.set_title('Raw data with hot pixels')
ax1.imshow(Z,interpolation='nearest',origin='lower')
#Now we try to find the hot pixels
blurred_Z = scipy.ndimage.gaussian_filter(Z, sigma=2)
difference = Z - blurred_Z
ax2.set_title('Difference with hot pixels identified')
ax2.imshow(difference,interpolation='nearest',origin='lower')
threshold = 15
hot_pixels = np.nonzero((difference>threshold) | (difference<-threshold))
#Don't include the hot pixels that we found near the edge:
count = 0
for y,x in zip(hot_pixels[0],hot_pixels[1]):
if (x != 0) and (x != 199) and (y != 0) and (y != 199):
ax2.plot(x,y,'ro')
count += 1
print 'Detected %i hot/dead pixels out of 20.'%count
ax2.set_xlim(0,200); ax2.set_ylim(0,200)
plt.show()
输出:
答案 0 :(得分:7)
基本上,我认为处理热像素的最快方法就是使用size = 2中值滤波器。然后,噗,你的热像素消失了,你也杀了相机的各种其他高频传感器噪音。
如果你真的想要仅移除热像素,那么替换你可以从原始图像中减去中值滤波器,就像我在问题中所做的那样,并且只用中值滤波图像中的值替换这些值。这在边缘处不起作用,因此如果您可以忽略沿边缘的像素,那么这将使事情变得更加容易。
如果您想处理边缘,可以使用下面的代码。但是,它并不是最快的:
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage
plt.figure(figsize=(10,5))
ax1 = plt.subplot(121)
ax2 = plt.subplot(122)
#make some sample data
x = np.linspace(-5,5,200)
X,Y = np.meshgrid(x,x)
Z = 100*np.cos(np.sqrt(x**2 + Y**2))**2 + 50
np.random.seed(1)
for i in range(0,11):
#Add some hot pixels
Z[np.random.randint(low=0,high=199),np.random.randint(low=0,high=199)]= np.random.randint(low=200,high=255)
#and dead pixels
Z[np.random.randint(low=0,high=199),np.random.randint(low=0,high=199)]= np.random.randint(low=0,high=10)
#And some hot pixels in the corners and edges
Z[0,0] =255
Z[-1,-1] =255
Z[-1,0] =255
Z[0,-1] =255
Z[0,100] =255
Z[-1,100]=255
Z[100,0] =255
Z[100,-1]=255
#Then plot it
ax1.set_title('Raw data with hot pixels')
ax1.imshow(Z,interpolation='nearest',origin='lower')
def find_outlier_pixels(data,tolerance=3,worry_about_edges=True):
#This function finds the hot or dead pixels in a 2D dataset.
#tolerance is the number of standard deviations used to cutoff the hot pixels
#If you want to ignore the edges and greatly speed up the code, then set
#worry_about_edges to False.
#
#The function returns a list of hot pixels and also an image with with hot pixels removed
from scipy.ndimage import median_filter
blurred = median_filter(Z, size=2)
difference = data - blurred
threshold = 10*np.std(difference)
#find the hot pixels, but ignore the edges
hot_pixels = np.nonzero((np.abs(difference[1:-1,1:-1])>threshold) )
hot_pixels = np.array(hot_pixels) + 1 #because we ignored the first row and first column
fixed_image = np.copy(data) #This is the image with the hot pixels removed
for y,x in zip(hot_pixels[0],hot_pixels[1]):
fixed_image[y,x]=blurred[y,x]
if worry_about_edges == True:
height,width = np.shape(data)
###Now get the pixels on the edges (but not the corners)###
#left and right sides
for index in range(1,height-1):
#left side:
med = np.median(data[index-1:index+2,0:2])
diff = np.abs(data[index,0] - med)
if diff>threshold:
hot_pixels = np.hstack(( hot_pixels, [[index],[0]] ))
fixed_image[index,0] = med
#right side:
med = np.median(data[index-1:index+2,-2:])
diff = np.abs(data[index,-1] - med)
if diff>threshold:
hot_pixels = np.hstack(( hot_pixels, [[index],[width-1]] ))
fixed_image[index,-1] = med
#Then the top and bottom
for index in range(1,width-1):
#bottom:
med = np.median(data[0:2,index-1:index+2])
diff = np.abs(data[0,index] - med)
if diff>threshold:
hot_pixels = np.hstack(( hot_pixels, [[0],[index]] ))
fixed_image[0,index] = med
#top:
med = np.median(data[-2:,index-1:index+2])
diff = np.abs(data[-1,index] - med)
if diff>threshold:
hot_pixels = np.hstack(( hot_pixels, [[height-1],[index]] ))
fixed_image[-1,index] = med
###Then the corners###
#bottom left
med = np.median(data[0:2,0:2])
diff = np.abs(data[0,0] - med)
if diff>threshold:
hot_pixels = np.hstack(( hot_pixels, [[0],[0]] ))
fixed_image[0,0] = med
#bottom right
med = np.median(data[0:2,-2:])
diff = np.abs(data[0,-1] - med)
if diff>threshold:
hot_pixels = np.hstack(( hot_pixels, [[0],[width-1]] ))
fixed_image[0,-1] = med
#top left
med = np.median(data[-2:,0:2])
diff = np.abs(data[-1,0] - med)
if diff>threshold:
hot_pixels = np.hstack(( hot_pixels, [[height-1],[0]] ))
fixed_image[-1,0] = med
#top right
med = np.median(data[-2:,-2:])
diff = np.abs(data[-1,-1] - med)
if diff>threshold:
hot_pixels = np.hstack(( hot_pixels, [[height-1],[width-1]] ))
fixed_image[-1,-1] = med
return hot_pixels,fixed_image
hot_pixels,fixed_image = find_outlier_pixels(Z)
for y,x in zip(hot_pixels[0],hot_pixels[1]):
ax1.plot(x,y,'ro',mfc='none',mec='r',ms=10)
ax1.set_xlim(0,200)
ax1.set_ylim(0,200)
ax2.set_title('Image with hot pixels removed')
ax2.imshow(fixed_image,interpolation='nearest',origin='lower',clim=(0,255))
plt.show()
输出: