如何在Java中找到不同颜色的阴影?

时间:2013-09-22 08:21:02

标签: java colors image-manipulation bufferedimage

如果我有一个数字的RBG代码,例如-16777216(黑色),如何使用此颜色代码找到其他类似的黑色阴影?

我正在尝试将所有不是-16777216的像素标记为白色,从而将图像转换为单色。然而,通常会发现不同的黑色阴影,但它们会丢失,因为它们不完全匹配。

编辑:我遇到了一些麻烦。当我尝试使用此颜色来查找黑色阴影时,我可以忽略它们,同时将其他像素转换为白色,这是我的结果:

来源:

source

结果:

result

代码:

package test;

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import java.net.URL;
import javax.imageio.ImageIO;

public class Test
{       
    public static void main(String[] args)
    {
        try
        {
            BufferedImage source = ImageIO.read( new URL("http://i.imgur.com/UgdqfUY.png"));
            //-16777216 = black:
            BufferedImage dest = makeMonoChromeFast(source, -16777216);
            File result = new File("D:/result.png");
            ImageIO.write(dest, "png", result);
        }
        catch (Exception e)
        {
            e.printStackTrace();;
        }
    }

    public static BufferedImage makeMonoChromeFast(BufferedImage source, int foreground)
    {        
        int background = -1; //white;

        Color fg = new Color(foreground);

        int color = 0;
        for (int y = 0; y < source.getHeight(); y++)
        {
            for (int x = 0; x < source.getWidth(); x++)
            {
                color = source.getRGB(x, y);
                if ( color == foreground )
                    continue;
                if (! isIncluded(fg, color, 50))
                    source.setRGB(x, y, background);;
            }
        }

        return source;
    }

    public static boolean isIncluded(Color target, int pixelColor, int tolerance)
    {
        Color pixel = new Color(pixelColor);
        int rT = target.getRed();
        int gT = target.getGreen();
        int bT = target.getBlue();
        int rP = pixel.getRed();
        int gP = pixel.getGreen();
        int bP = pixel.getBlue();
        return(
            (rP-tolerance<=rT) && (rT<=rP+tolerance) &&
            (gP-tolerance<=gT) && (gT<=gP+tolerance) &&
            (bP-tolerance<=bT) && (bT<=bP+tolerance) );
    }
}

2 个答案:

答案 0 :(得分:3)

您可以使用此“寻找差异容差的颜色”方法。

public static boolean isIncluded(Color target, Color pixel, int tolerance) {
    int rT = target.getRed();
    int gT = target.getGreen();
    int bT = target.getBlue();
    int rP = pixel.getRed();
    int gP = pixel.getGreen();
    int bP = pixel.getBlue();
    return(
        (rP-tolerance<=rT) && (rT<=rP+tolerance) &&
        (gP-tolerance<=gT) && (gT<=gP+tolerance) &&
        (bP-tolerance<=bT) && (bT<=bP+tolerance) );
}

此处用于获取摩托车(motorcycle-03.jpg)的轮廓(motorcycle.jpg),同时剥去“微弱的灰色叠加层”。

motorcycle.jpg

Original Image

摩托车03.png

Processed Image

ImageOutline.java

此代码需要一些耐心(运行时)。有关能够更快地执行相同操作的代码,请参阅Smoothing a jagged path

import java.awt.*;
import java.awt.image.BufferedImage;
import java.awt.geom.Area;
import javax.imageio.ImageIO;
import java.io.File;
import java.util.Date;
import javax.swing.*;

/* Motorcycle image courtesy of ShutterStock
http://www.shutterstock.com/pic-13585165/stock-vector-travel-motorcycle-silhouette.html */
class ImageOutline {

    public static Area getOutline(BufferedImage image, Color color, boolean include, int tolerance) {
        Area area = new Area();
        for (int x=0; x<image.getWidth(); x++) {
            for (int y=0; y<image.getHeight(); y++) {
                Color pixel = new Color(image.getRGB(x,y));
                if (include) {
                    if (isIncluded(color, pixel, tolerance)) {
                        Rectangle r = new Rectangle(x,y,1,1);
                        area.add(new Area(r));
                    }
                } else {
                    if (!isIncluded(color, pixel, tolerance)) {
                        Rectangle r = new Rectangle(x,y,1,1);
                        area.add(new Area(r));
                    }
                }
            }
        }
        return area;
    }

    public static boolean isIncluded(Color target, Color pixel, int tolerance) {
        int rT = target.getRed();
        int gT = target.getGreen();
        int bT = target.getBlue();
        int rP = pixel.getRed();
        int gP = pixel.getGreen();
        int bP = pixel.getBlue();
        return(
            (rP-tolerance<=rT) && (rT<=rP+tolerance) &&
            (gP-tolerance<=gT) && (gT<=gP+tolerance) &&
            (bP-tolerance<=bT) && (bT<=bP+tolerance) );
    }

    public static BufferedImage drawOutline(int w, int h, Area area) {
        final BufferedImage result = new BufferedImage(
            w,
            h,
            BufferedImage.TYPE_INT_RGB);
        Graphics2D g = result.createGraphics();

        g.setColor(Color.white);
        g.fillRect(0,0,w,h);

        g.setClip(area);
        g.setColor(Color.red);
        g.fillRect(0,0,w,h);

        g.setClip(null);
        g.setStroke(new BasicStroke(1));
        g.setColor(Color.blue);
        g.draw(area);

        return result;
    }

    public static BufferedImage createAndWrite(
        BufferedImage image,
        Color color,
        boolean include,
        int tolerance,
        String name)
        throws Exception {
        int w = image.getWidth();
        int h = image.getHeight();

        System.out.println("Get Area: " + new Date() + " - " + name);
        Area area = getOutline(image, color, include, tolerance);
        System.out.println("Got Area: " + new Date() + " - " + name);

        final BufferedImage result = drawOutline(w,h,area);
        displayAndWriteImage(result, name);

        return result;
    }

    public static void displayAndWriteImage(BufferedImage image, String fileName) throws Exception {
        ImageIO.write(image, "png", new File(fileName));
        JOptionPane.showMessageDialog(null, new JLabel(new ImageIcon(image)));
    }

    public static void main(String[] args) throws Exception {
        final BufferedImage outline = ImageIO.read(new File("motorcycle.jpg"));
        BufferedImage crop = outline.getSubimage(17,35,420,270);
        displayAndWriteImage(crop, "motorcycle-01.png");

        BufferedImage crude = createAndWrite(crop, Color.white, false, 60, "motorcycle-02.png");

        BufferedImage combo = createAndWrite(crude, Color.red, true, 0, "motorcycle-03.png");
    }
}

使用问题中的代码,容差为150,我看到了这一点。

enter image description here

答案 1 :(得分:2)

一般来说,我认为要采用的方法是使用this Wikipedia page中描述的sRGB到灰度转换公式,然后选择一个特定的“灰色”值作为黑色和白色之间的边界。 (选择取决于你......)

但是说你已经有了代表灰度点的RGB值,你会发现它们都有相同的红色,绿色和蓝色值。如果确实如此,那么您只需选择RGB中的一个颜色分量,并将其与所选“灰色”的相同颜色值进行比较。

如果您需要区分黑色,灰色和白色的多种色调,请选择多个边界“颜色”。


  

编辑:我遇到了一些麻烦。当我尝试使用此颜色来查找黑色阴影时,我可以忽略它们,同时将其他像素转换为白色,这是我的结果:

你看到的是抗锯齿效果。实际上图像中的“纯”黑色很少。人眼看起来很黑的很多东西实际上是黑暗的,或者不是那么深灰色。您需要使边界颜色(即“黑色”和“非黑色”之间的边界)更加灰色。