如果我有一个数字的RBG代码,例如-16777216
(黑色),如何使用此颜色代码找到其他类似的黑色阴影?
我正在尝试将所有不是-16777216
的像素标记为白色,从而将图像转换为单色。然而,通常会发现不同的黑色阴影,但它们会丢失,因为它们不完全匹配。
编辑:我遇到了一些麻烦。当我尝试使用此颜色来查找黑色阴影时,我可以忽略它们,同时将其他像素转换为白色,这是我的结果:
来源:
结果:
代码:
package test;
import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import java.net.URL;
import javax.imageio.ImageIO;
public class Test
{
public static void main(String[] args)
{
try
{
BufferedImage source = ImageIO.read( new URL("http://i.imgur.com/UgdqfUY.png"));
//-16777216 = black:
BufferedImage dest = makeMonoChromeFast(source, -16777216);
File result = new File("D:/result.png");
ImageIO.write(dest, "png", result);
}
catch (Exception e)
{
e.printStackTrace();;
}
}
public static BufferedImage makeMonoChromeFast(BufferedImage source, int foreground)
{
int background = -1; //white;
Color fg = new Color(foreground);
int color = 0;
for (int y = 0; y < source.getHeight(); y++)
{
for (int x = 0; x < source.getWidth(); x++)
{
color = source.getRGB(x, y);
if ( color == foreground )
continue;
if (! isIncluded(fg, color, 50))
source.setRGB(x, y, background);;
}
}
return source;
}
public static boolean isIncluded(Color target, int pixelColor, int tolerance)
{
Color pixel = new Color(pixelColor);
int rT = target.getRed();
int gT = target.getGreen();
int bT = target.getBlue();
int rP = pixel.getRed();
int gP = pixel.getGreen();
int bP = pixel.getBlue();
return(
(rP-tolerance<=rT) && (rT<=rP+tolerance) &&
(gP-tolerance<=gT) && (gT<=gP+tolerance) &&
(bP-tolerance<=bT) && (bT<=bP+tolerance) );
}
}
答案 0 :(得分:3)
您可以使用此“寻找差异容差的颜色”方法。
public static boolean isIncluded(Color target, Color pixel, int tolerance) {
int rT = target.getRed();
int gT = target.getGreen();
int bT = target.getBlue();
int rP = pixel.getRed();
int gP = pixel.getGreen();
int bP = pixel.getBlue();
return(
(rP-tolerance<=rT) && (rT<=rP+tolerance) &&
(gP-tolerance<=gT) && (gT<=gP+tolerance) &&
(bP-tolerance<=bT) && (bT<=bP+tolerance) );
}
此处用于获取摩托车(motorcycle-03.jpg
)的轮廓(motorcycle.jpg
),同时剥去“微弱的灰色叠加层”。
此代码需要一些耐心(运行时)。有关能够更快地执行相同操作的代码,请参阅Smoothing a jagged path。
import java.awt.*;
import java.awt.image.BufferedImage;
import java.awt.geom.Area;
import javax.imageio.ImageIO;
import java.io.File;
import java.util.Date;
import javax.swing.*;
/* Motorcycle image courtesy of ShutterStock
http://www.shutterstock.com/pic-13585165/stock-vector-travel-motorcycle-silhouette.html */
class ImageOutline {
public static Area getOutline(BufferedImage image, Color color, boolean include, int tolerance) {
Area area = new Area();
for (int x=0; x<image.getWidth(); x++) {
for (int y=0; y<image.getHeight(); y++) {
Color pixel = new Color(image.getRGB(x,y));
if (include) {
if (isIncluded(color, pixel, tolerance)) {
Rectangle r = new Rectangle(x,y,1,1);
area.add(new Area(r));
}
} else {
if (!isIncluded(color, pixel, tolerance)) {
Rectangle r = new Rectangle(x,y,1,1);
area.add(new Area(r));
}
}
}
}
return area;
}
public static boolean isIncluded(Color target, Color pixel, int tolerance) {
int rT = target.getRed();
int gT = target.getGreen();
int bT = target.getBlue();
int rP = pixel.getRed();
int gP = pixel.getGreen();
int bP = pixel.getBlue();
return(
(rP-tolerance<=rT) && (rT<=rP+tolerance) &&
(gP-tolerance<=gT) && (gT<=gP+tolerance) &&
(bP-tolerance<=bT) && (bT<=bP+tolerance) );
}
public static BufferedImage drawOutline(int w, int h, Area area) {
final BufferedImage result = new BufferedImage(
w,
h,
BufferedImage.TYPE_INT_RGB);
Graphics2D g = result.createGraphics();
g.setColor(Color.white);
g.fillRect(0,0,w,h);
g.setClip(area);
g.setColor(Color.red);
g.fillRect(0,0,w,h);
g.setClip(null);
g.setStroke(new BasicStroke(1));
g.setColor(Color.blue);
g.draw(area);
return result;
}
public static BufferedImage createAndWrite(
BufferedImage image,
Color color,
boolean include,
int tolerance,
String name)
throws Exception {
int w = image.getWidth();
int h = image.getHeight();
System.out.println("Get Area: " + new Date() + " - " + name);
Area area = getOutline(image, color, include, tolerance);
System.out.println("Got Area: " + new Date() + " - " + name);
final BufferedImage result = drawOutline(w,h,area);
displayAndWriteImage(result, name);
return result;
}
public static void displayAndWriteImage(BufferedImage image, String fileName) throws Exception {
ImageIO.write(image, "png", new File(fileName));
JOptionPane.showMessageDialog(null, new JLabel(new ImageIcon(image)));
}
public static void main(String[] args) throws Exception {
final BufferedImage outline = ImageIO.read(new File("motorcycle.jpg"));
BufferedImage crop = outline.getSubimage(17,35,420,270);
displayAndWriteImage(crop, "motorcycle-01.png");
BufferedImage crude = createAndWrite(crop, Color.white, false, 60, "motorcycle-02.png");
BufferedImage combo = createAndWrite(crude, Color.red, true, 0, "motorcycle-03.png");
}
}
使用问题中的代码,容差为150,我看到了这一点。
答案 1 :(得分:2)
一般来说,我认为要采用的方法是使用this Wikipedia page中描述的sRGB到灰度转换公式,然后选择一个特定的“灰色”值作为黑色和白色之间的边界。 (选择取决于你......)
但是说你已经有了代表灰度点的RGB值,你会发现它们都有相同的红色,绿色和蓝色值。如果确实如此,那么您只需选择RGB中的一个颜色分量,并将其与所选“灰色”的相同颜色值进行比较。
如果您需要区分黑色,灰色和白色的多种色调,请选择多个边界“颜色”。
编辑:我遇到了一些麻烦。当我尝试使用此颜色来查找黑色阴影时,我可以忽略它们,同时将其他像素转换为白色,这是我的结果:
你看到的是抗锯齿效果。实际上图像中的“纯”黑色很少。人眼看起来很黑的很多东西实际上是黑暗的,或者不是那么深灰色。您需要使边界颜色(即“黑色”和“非黑色”之间的边界)更加灰色。