受到this question的启发,我认为把一个“MutableNum”类放在一起是有趣的,在尽可能多的情况下,它可以像标准的数字类型一样运行,但它会是可变的,所以类似下面的东西会起作用:
def double(x): x *= 2
x = MutableNum(9)
print(x) # 9
double(x)
print(x) # 18
我得到了以下内容:
class MutableNum():
val = None
def __init__(self, v): self.val = v
# Comparison Methods
def __eq__(self, x): return self.val == x
def __ne__(self, x): return self.val != x
def __lt__(self, x): return self.val < x
def __gt__(self, x): return self.val > x
def __le__(self, x): return self.val <= x
def __ge__(self, x): return self.val >= x
# Arithmetic
def __mul__(self, x): return self.__class__(self.val * x)
def __rmul__(self, x): return self.__class__(self.val * x)
# Casts
def __int__(self): return self.val
# Represenation
def __str__(self): return "%d" % (self.val)
def __repr__(self): return "%s(%d)" % (self.__class__.__name__, self.val)
哪个有效(到目前为止,据我所知),但我发现自己想要“捕捉”魔法,因为其中很多都会遵循非常相似的结构。
例如,我想抓住__mul__
,__add__
,__sub__
等类似的内容:
def catch(self, method, x): return MutableNum(self.val.method(x))
因此对于__add__
,catch()
将返回
return MutableNum(self.val.__add__(x))
这样的事情可能吗?或者我应该像我已经完成的那样实施所有魔术方法?
编辑:我尝试用__getattr__(self,key)
捕捉魔术方法进行了一些尝试,但结果好坏参与。
提前致谢。
在大家的帮助下,这就是我想出的:
class MutableNum(object):
__val__ = None
def __init__(self, v): self.__val__ = v
# Comparison Methods
def __eq__(self, x): return self.__val__ == x
def __ne__(self, x): return self.__val__ != x
def __lt__(self, x): return self.__val__ < x
def __gt__(self, x): return self.__val__ > x
def __le__(self, x): return self.__val__ <= x
def __ge__(self, x): return self.__val__ >= x
def __cmp__(self, x): return 0 if self.__val__ == x else 1 if self.__val__ > 0 else -1
# Unary Ops
def __pos__(self): return self.__class__(+self.__val__)
def __neg__(self): return self.__class__(-self.__val__)
def __abs__(self): return self.__class__(abs(self.__val__))
# Bitwise Unary Ops
def __invert__(self): return self.__class__(~self.__val__)
# Arithmetic Binary Ops
def __add__(self, x): return self.__class__(self.__val__ + x)
def __sub__(self, x): return self.__class__(self.__val__ - x)
def __mul__(self, x): return self.__class__(self.__val__ * x)
def __div__(self, x): return self.__class__(self.__val__ / x)
def __mod__(self, x): return self.__class__(self.__val__ % x)
def __pow__(self, x): return self.__class__(self.__val__ ** x)
def __floordiv__(self, x): return self.__class__(self.__val__ // x)
def __divmod__(self, x): return self.__class__(divmod(self.__val__, x))
def __truediv__(self, x): return self.__class__(self.__val__.__truediv__(x))
# Reflected Arithmetic Binary Ops
def __radd__(self, x): return self.__class__(x + self.__val__)
def __rsub__(self, x): return self.__class__(x - self.__val__)
def __rmul__(self, x): return self.__class__(x * self.__val__)
def __rdiv__(self, x): return self.__class__(x / self.__val__)
def __rmod__(self, x): return self.__class__(x % self.__val__)
def __rpow__(self, x): return self.__class__(x ** self.__val__)
def __rfloordiv__(self, x): return self.__class__(x // self.__val__)
def __rdivmod__(self, x): return self.__class__(divmod(x, self.__val__))
def __rtruediv__(self, x): return self.__class__(x.__truediv__(self.__val__))
# Bitwise Binary Ops
def __and__(self, x): return self.__class__(self.__val__ & x)
def __or__(self, x): return self.__class__(self.__val__ | x)
def __xor__(self, x): return self.__class__(self.__val__ ^ x)
def __lshift__(self, x): return self.__class__(self.__val__ << x)
def __rshift__(self, x): return self.__class__(self.__val__ >> x)
# Reflected Bitwise Binary Ops
def __rand__(self, x): return self.__class__(x & self.__val__)
def __ror__(self, x): return self.__class__(x | self.__val__)
def __rxor__(self, x): return self.__class__(x ^ self.__val__)
def __rlshift__(self, x): return self.__class__(x << self.__val__)
def __rrshift__(self, x): return self.__class__(x >> self.__val__)
# Compound Assignment
def __iadd__(self, x): self.__val__ += x; return self
def __isub__(self, x): self.__val__ -= x; return self
def __imul__(self, x): self.__val__ *= x; return self
def __idiv__(self, x): self.__val__ /= x; return self
def __imod__(self, x): self.__val__ %= x; return self
def __ipow__(self, x): self.__val__ **= x; return self
# Casts
def __nonzero__(self): return self.__val__ != 0
def __int__(self): return self.__val__.__int__() # XXX
def __float__(self): return self.__val__.__float__() # XXX
def __long__(self): return self.__val__.__long__() # XXX
# Conversions
def __oct__(self): return self.__val__.__oct__() # XXX
def __hex__(self): return self.__val__.__hex__() # XXX
def __str__(self): return self.__val__.__str__() # XXX
# Random Ops
def __index__(self): return self.__val__.__index__() # XXX
def __trunc__(self): return self.__val__.__trunc__() # XXX
def __coerce__(self, x): return self.__val__.__coerce__(x)
# Represenation
def __repr__(self): return "%s(%d)" % (self.__class__.__name__, self.__val__)
# Define innertype, a function that returns the type of the inner value self.__val__
def innertype(self): return type(self.__val__)
# Define set, a function that you can use to set the value of the instance
def set(self, x):
if isinstance(x, (int, long, float)): self.__val__ = x
elif isinstance(x, self.__class__): self.__val__ = x.__val__
else: raise TypeError("expected a numeric type")
# Pass anything else along to self.__val__
def __getattr__(self, attr):
print("getattr: " + attr)
return getattr(self.__val__, attr)
我使用了标题和粗略的测试套件here放了整个班级。
mgilson建议使用@total_ordering
将简化这一点。
只要您遵循使用指南(例如,使用x *= 2
代替x = x * 2
),您似乎就可以了。
虽然,简单地将参数包装在列表中然后修改x[0]
似乎要容易得多 - 仍然是一个有趣的项目。
答案 0 :(得分:2)
最简单的方法是手动实现它们。如果这是你要添加到很多类的东西那么你可能会看到元类(可以是大脑融化)或类装饰器(更容易处理),但是你应该手动完成它,这样你就知道发生了什么
__getattr__
仅在某些情况下有效的原因是,只有在类或其任何基类中找不到它所寻找的名称时才会调用它。因此,如果__xyz__
上找到object
,则不会调用__getattr__
。
答案 1 :(得分:2)
大多数魔术方法都是在类型而不是实例上查找的。您既不能在实例中覆盖它们,也不能用__getattr__
捕获它们。为了挂钩双功能,你必须实现它。
示例:
obj < 1
不会打电话
obj.__lt__(1)
而是呼叫通过该类型。它几乎等于(除了它在元类上跳过getattr)。
type(obj).__lt__(obj, 1)
查找记录为http://docs.python.org/3/reference/datamodel.html#special-method-lookup