我觉得这个问题应该已经得到解答,但我没有找到。我有一个数组,我想使用向量对其进行子集化。我知道如何以艰难的方式去做,但我确信必须有一个简单的方法。有什么想法吗?
这是我的例子:
dat <- data.frame(a = rep(letters[1:3], 2), b = rep(letters[1:2], 3), c = c(rep("a", 5), "b"), x = rnorm(6), stringsAsFactors = FALSE)
l <- by(dat[ , "x"], dat[ , 1:3], mean)
l["a", "a", "a"] # works
l[c("a", "a", "a")] # does not work
所以我想我需要一种方法来删除c()
包装器格式c("a", "a", "a")
,然后再将其传递给l
。
答案 0 :(得分:4)
这已经得到了解答,但我想让事情变得更加清晰。我们来这里举个例子:
dat <- data.frame(a = rep(letters[1:3], 2), b = rep(letters[1:2], 3), c = c(rep("a",
5), "b"), x = rnorm(6), stringsAsFactors = FALSE)
l <- by(dat[, "x"], dat[, 1:3], mean)
l["a", "a", "a"] # works
## [1] 1.246
l[c("a", "a", "a")] # does not work
## [1] NA NA NA
之前的回答建议在子集中使用matrix(rep("a", 3), nrow=1)
。
我想扩展为什么这是有效的。首先,我们来看看是什么
这两种数据结构之间的差异是:
a.mat <- matrix(rep("a", 3), nrow = 1)
a.vec <- c("a", "a", "a") # Note: this is equivalent to rep('a', 3)
a.mat
## [,1] [,2] [,3]
## [1,] "a" "a" "a"
a.vec
## [1] "a" "a" "a"
as.matrix(a.vec)
## [,1]
## [1,] "a"
## [2,] "a"
## [3,] "a"
l[a.mat]
## [1] 1.246
l[a.vec]
## [1] NA NA NA
l[as.matrix(a.vec)]
## [1] NA NA NA
当您将它们打印到屏幕时, a.mat
和a.vec
看起来一样,但它们不是
以相同的方式处理,因为R在Column Major Order中创建矩阵,因为它逐列写入和读取矩阵。当您使用矩阵进行子集化时,它会将每列用作不同的维度。如果矩阵中的列数与要进行子集化的对象中的维数相匹配,则每个后续维度都将使用每列。
如果列数不匹配,R将矩阵折叠为向量并尝试匹配那样的元素索引。以下是一些例子:
a.mat[, -1] # Now only two columns
## [1] "a" "a"
l[a.mat[, -1]] # Notice you get NA twice here.
## [1] NA NA
l[matrix(rep("a", 4), nrow = 1)] # Using a matrix with 4 columns.
## [1] NA NA NA NA
作为旁注,当您使用字符向量进行子集化时,R将尝试匹配任何元素名称。如果它们不存在,您将收到NA
或错误:
# Vector example:
x <- letters
x[1]
## [1] "a"
x["a"]
## [1] NA
names(x) <- letters
x[1]
## a
## "a"
x["a"]
## a
## "a"
x[c("a", "a", "a")]
## a a a
## "a" "a" "a"
x[a.mat] # collapsing matrix down to a vector.
## a a a
## "a" "a" "a"
# Matrix example:
x <- matrix(letters[1:9], nrow = 3, ncol = 3)
x
## [,1] [,2] [,3]
## [1,] "a" "d" "g"
## [2,] "b" "e" "h"
## [3,] "c" "f" "i"
x[c(1, 1)]
## [1] "a" "a"
x[1, 1]
## [1] "a"
x[c("a", "a")]
## [1] NA NA
x["a", "a"]
## Error: no 'dimnames' attribute for array
rownames(x) <- letters[1:3]
colnames(x) <- letters[1:3]
x
## a b c
## a "a" "d" "g"
## b "b" "e" "h"
## c "c" "f" "i"
x[c(1, 1)]
## [1] "a" "a"
x[1, 1]
## [1] "a"
x[c("a", "a")]
## [1] NA NA
x["a", "a"]
## [1] "a"
最后,如果你使用数字向量,你将总是得到一个定义的值(除非它超出界限):
l[c(1,1,1)]
## [1] 1.246 1.246 1.246
l[1, 1, 1]
## [1] 1.246
答案 1 :(得分:3)
您可以使用矩阵代替矢量:
l[matrix(rep("a", 3), nrow=1)]