给定形状为(n_days, n_lat, n_lon)
的np.array,我想计算每个lat-lon单元的固定箱的直方图(即每日值的分布)。
问题的一个简单解决方案是循环遍历单元格并为每个单元格调用np.histogram
::
bins = np.linspace(0, 1.0, 10)
B = np.rand(n_days, n_lat, n_lon)
H = np.zeros((n_bins, n_lat, n_lon), dtype=np.int32)
for lat in range(n_lat):
for lon in range(n_lon):
H[:, lat, lon] = np.histogram(A[:, lat, lon], bins=bins)[0]
# note: code not tested
但这很慢。是否有一个更有效的解决方案,不涉及循环?
我查看了np.searchsorted
以获取B
中每个值的bin索引,然后使用花式索引来更新H
::
bin_indices = bins.searchsorted(B)
H[bin_indices.ravel(), idx[0], idx[1]] += 1 # where idx is a index grid given by np.indices
# note: code not tested
但这不起作用,因为就地添加运算符(+ =)似乎不支持同一单元格的多次更新。
THX, 彼得
答案 0 :(得分:3)
您可以使用numpy.apply_along_axis消除循环。
hist, bin_edges = apply_along_axis(lambda x: histogram(x, bins=bins), 0, B)
答案 1 :(得分:0)
也许这有用吗?:
import numpy as np
n_days=31
n_lat=10
n_lon=10
n_bins=10
bins = np.linspace(0, 1.0, n_bins)
B = np.random.rand(n_days, n_lat, n_lon)
# flatten to 1D
C=np.reshape(B,n_days*n_lat*n_lon)
# use digitize to get the index of the bin to which the numbers belong
D=np.digitize(C,bins)-1
# reshape the results back to the original shape
result=np.reshape(D,(n_days, n_lat, n_lon))