在python中,如果我有一组数据
x, y, z
我可以用
进行分散import matplotlib.pyplot as plt
plt.scatter(x,y,c=z)
如何获得散布的plt.contourf(x,y,z)
?
答案 0 :(得分:28)
使用tricontourf:
import matplotlib.tri as tri
import matplotlib.pyplot as plt
triang = tri.Triangulation(x, y)
plt.tricontour(x, y, z, 15, linewidths=0.5, colors='k')
plt.tricontourf(x, y, z, 15)
使用以下函数转换为contourf所需的格式:
from numpy import linspace, meshgrid
from matplotlib.mlab import griddata
def grid(x, y, z, resX=100, resY=100):
"Convert 3 column data to matplotlib grid"
xi = linspace(min(x), max(x), resX)
yi = linspace(min(y), max(y), resY)
Z = griddata(x, y, z, xi, yi)
X, Y = meshgrid(xi, yi)
return X, Y, Z
现在你可以做到:
X, Y, Z = grid(x, y, z)
plt.contourf(X, Y, Z)
答案 1 :(得分:6)
contour
期望定期网格化数据。因此,您需要首先插入数据:
import numpy as np
from scipy.interpolate import griddata
import matplotlib.pyplot as plt
import numpy.ma as ma
from numpy.random import uniform, seed
# make up some randomly distributed data
seed(1234)
npts = 200
x = uniform(-2,2,npts)
y = uniform(-2,2,npts)
z = x*np.exp(-x**2-y**2)
# define grid.
xi = np.linspace(-2.1,2.1,100)
yi = np.linspace(-2.1,2.1,100)
# grid the data.
zi = griddata((x, y), z, (xi[None,:], yi[:,None]), method='cubic')
# contour the gridded data, plotting dots at the randomly spaced data points.
CS = plt.contour(xi,yi,zi,15,linewidths=0.5,colors='k')
CS = plt.contourf(xi,yi,zi,15,cmap=plt.cm.jet)
plt.colorbar() # draw colorbar
# plot data points.
plt.scatter(x,y,marker='o',c='b',s=5)
plt.xlim(-2,2)
plt.ylim(-2,2)
plt.title('griddata test (%d points)' % npts)
plt.show()
请注意,我从优秀的matplotlib cookbook
中无耻地窃取了此代码答案 2 :(得分:6)
解决方案取决于数据的组织方式。
如果x
和y
数据已经定义了网格,则可以轻松地将它们重新整形为四边形网格。 E.g。
#x y z
4 1 3
6 1 8
8 1 -9
4 2 10
6 2 -1
8 2 -8
4 3 8
6 3 -9
8 3 0
4 4 -1
6 4 -8
8 4 8
可以使用
绘制为contour
import matplotlib.pyplot as plt
import numpy as np
x,y,z = np.loadtxt("data.txt", unpack=True)
plt.contour(x.reshape(4,3), y.reshape(4,3), z.reshape(4,3))
如果数据不是生活在四边形网格上,可以在网格上插入数据。 matplotlib本身使用不推荐使用此方法。
替代方案:使用matplotlib.mlab.griddata
提供了一种方法。scipy.interpolate.griddata
import numpy as np
from scipy.interpolate import griddata
xi = np.linspace(4, 8, 10)
yi = np.linspace(1, 4, 10)
zi = griddata((x, y), z, (xi[None,:], yi[:,None]), method='linear')
plt.contour(xi, yi, zi)
最后,可以在不使用四边形网格的情况下完全绘制轮廓。这可以使用tricontour
完成。
plt.tricontour(x,y,z)
在matplotlib page上可以找到比较后两种方法的示例。