鉴于这两个数据框:
>>> df1 = pd.DataFrame({'c1':['a','a','b','b'], 'c2':['x','y','x','y'], 'val':0})
>>> df1
c1 c2 val
0 a x 0
1 a y 0
2 b x 0
3 b y 0
>>> df2 = pd.DataFrame({'c1':['a','a','b'], 'c2':['x','y','y'], 'val':[12,31,14]})
>>> df2
c1 c2 val
0 a x 12
1 a y 31
2 b y 14
是否有一个函数从val
获取df2
的元素并将它们放在df1
的相应索引中,从而产生:
>>> df1_updated
c1 c2 val
0 a x 12
1 a y 31
2 b x 0
3 b y 14
答案 0 :(得分:8)
是的,请查看combine_first或update。例如:
>>> df1['val'] = df2['val'].combine_first(df1['val'])
>>> df1
Out[26]:
c1 c2 val
0 a x 12
1 a y 31
2 b x 14
3 b y 0
编辑:根据c1和c2组合忽略当前索引:
>>> df1['val'] = df2.set_index(['c1','c2'])['val'].combine_first(df1.set_index(['c1','c2'])['val']).values
>> df1
Out[25]:
c1 c2 val
0 a x 12
1 a y 31
2 b x 0
3 b y 14