我在一个等值区域地图旁边放了一个颜色条。因为绘制的数据是离散的而不是连续的值,所以我使用了一个LinearSegmentedColormap(使用the recipe from the scipy cookbook),我用我的最大计数值+ 1初始化,以显示0的颜色。 ,我现在有两个问题:
刻度标签间距不正确(5或更多或更少) - 它们应位于它们识别的颜色的中间;即0 - 4应向上移动,6 - 10应向下移动。
如果我使用drawedges=True
初始化颜色栏,以便我可以设置其dividers
属性的样式,我就明白了:
我正在创建我的色彩映射和色条:
cbmin, cbmax = min(counts), max(counts)
# this normalises the counts to a 0,1 interval
counts /= np.max(np.abs(counts), axis=0)
# density is a discrete number, so we have to use a discrete color ramp/bar
cm = cmap_discretize(plt.get_cmap('YlGnBu'), int(cbmax) + 1)
mappable = plt.cm.ScalarMappable(cmap=cm)
mappable.set_array(counts)
# set min and max values for the colour bar ticks
mappable.set_clim(cbmin, cbmax)
pc = PatchCollection(patches, match_original=True)
# impose our colour map onto the patch collection
pc.set_facecolor(cm(counts))
ax.add_collection(pc,)
cb = plt.colorbar(mappable, drawedges=True)
所以我想知道我将计数转换为0,1区间是否是其中一个问题。
在尝试了Hooked所建议的内容之后,0值是正确的,但随后的值逐渐设置得更高,到9应该是10的位置:
这是我使用的代码:
cb = plt.colorbar(mappable)
labels = np.arange(0, int(cbmax) + 1, 1)
loc = labels + .5
cb.set_ticks(loc)
cb.set_ticklabels(labels)
要确认,labels
肯定有正确的值:
In [3]: np.arange(0, int(cbmax) + 1, 1)
Out[3]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
答案 0 :(得分:18)
您正遭受一个错误的错误。你有11种颜色的10个滴答标签。您可以使用np.linspace
代替np.arange
来更正错误。使用np.linspace
第三个参数是所需值的数量。这减少了避免一对一错误所需的心理体操的数量:
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.cm as cm
import matplotlib.colors as mcolors
def colorbar_index(ncolors, cmap):
cmap = cmap_discretize(cmap, ncolors)
mappable = cm.ScalarMappable(cmap=cmap)
mappable.set_array([])
mappable.set_clim(-0.5, ncolors+0.5)
colorbar = plt.colorbar(mappable)
colorbar.set_ticks(np.linspace(0, ncolors, ncolors))
colorbar.set_ticklabels(range(ncolors))
def cmap_discretize(cmap, N):
"""Return a discrete colormap from the continuous colormap cmap.
cmap: colormap instance, eg. cm.jet.
N: number of colors.
Example
x = resize(arange(100), (5,100))
djet = cmap_discretize(cm.jet, 5)
imshow(x, cmap=djet)
"""
if type(cmap) == str:
cmap = plt.get_cmap(cmap)
colors_i = np.concatenate((np.linspace(0, 1., N), (0.,0.,0.,0.)))
colors_rgba = cmap(colors_i)
indices = np.linspace(0, 1., N+1)
cdict = {}
for ki,key in enumerate(('red','green','blue')):
cdict[key] = [ (indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki])
for i in xrange(N+1) ]
# Return colormap object.
return mcolors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024)
fig, ax = plt.subplots()
A = np.random.random((10,10))*10
cmap = plt.get_cmap('YlGnBu')
ax.imshow(A, interpolation='nearest', cmap=cmap)
colorbar_index(ncolors=11, cmap=cmap)
plt.show()
答案 1 :(得分:11)
您可以手动控制展示位置和标签。我将从the page you linked上cmap_discretize
生成的线性cmap开始:
import numpy as np
import pylab as plt
# The number of divisions of the cmap we have
k = 10
# Random test data
A = np.random.random((10,10))*k
c = cmap_discretize('jet', k)
# First show without
plt.subplot(121)
plt.imshow(A,interpolation='nearest',cmap=c)
plt.colorbar()
# Now label properly
plt.subplot(122)
plt.imshow(A,interpolation='nearest',cmap=c)
cb = plt.colorbar()
labels = np.arange(0,k,1)
loc = labels + .5
cb.set_ticks(loc)
cb.set_ticklabels(labels)
plt.show()