我想了解在boost :: spirit :: qi的引擎下究竟发生了什么。假设我们有简单的解析器,它解析并计算由数字和加/减操作组成的表达式:
int main()
{
std::string INPUT_DATA = "12e-1 + 3.4 - .67";
typedef std::string::iterator iterator_type;
iterator_type begin = std::begin(INPUT_DATA);
iterator_type end = std::end(INPUT_DATA);
namespace qi = boost::spirit::qi;
namespace ascii = boost::spirit::qi::ascii;
auto parser = qi::double_[qi::_val = qi::_1] // (1)
>> *(
(qi::lit('+') >> qi::double_[qi::_val += qi::_1]) // (2)
|
(qi::lit('-') >> qi::double_[qi::_val -= qi::_1]) // (3)
);
double result;
bool ok = qi::phrase_parse(begin, end, parser, ascii::space, result);
if ( ok && begin == end)
{
std::cout << "parsed, result = " << result << std::endl;
}
else
{
std::cout << "not parsed" << std::endl;
}
return 0;
}
行qi::_val
,(1)
和(2)
中的语义操作中的(3)
如何引用相同的值?如何在不使用boost :: phoenix的情况下实现相同的结果?
我想我必须编写一堆函数来接收来自qi::double_
的解析值,但是我应该怎么做呢?如何访问解析器的合成值?
答案 0 :(得分:5)
除了评论中提供的精美低级别信息外,让我向您展示精神的方式。
当然,我将结束一个不使用语义动作的演示。是的,它涉及更多代码,但它也将解析与评估分离。这在更复杂的情况下是好的(考虑回溯的解析器)。
从稍微简化代码开始:step 1
auto parser =
double_ [_val = _1] // (1)
>> *( (lit('+') >> double_[_val += _1]) // (2)
| (lit('-') >> double_[_val -= _1]) // (3)
);
您当然可以使用常规绑定功能:step 2
void add_operand(double& lhs, double rhs) { lhs += rhs; }
void sub_operand(double& lhs, double rhs) { lhs -= rhs; }
auto parser =
double_ [_val = _1]
>> *( (lit('+') >> double_[bind(add_operand, _val, _1)])
| (lit('-') >> double_[bind(sub_operand, _val, _1)])
);
现在,使用BOOST_PHOENIX_ADAPT_FUNCTION使它更漂亮:step 3
BOOST_PHOENIX_ADAPT_FUNCTION(void, add_, add_operand, 2)
BOOST_PHOENIX_ADAPT_FUNCTION(void, sub_, sub_operand, 2)
double_ [_val = _1]
>> *( (lit('+') >> double_[add_(_val, _1)])
| (lit('-') >> double_[sub_(_val, _1)])
);
或者您可以使用仿函数:step 4
struct add_operand {
template<typename...> struct result { typedef void type; };
template<typename L, typename R>
void operator()(L& lhs, R rhs) const { lhs += rhs; }
};
struct sub_operand {
template<typename...> struct result { typedef void type; };
template<typename L, typename R>
void operator()(L& lhs, R rhs) const { lhs -= rhs; }
};
auto parser =
double_ [_val = _1]
>> *( (lit('+') >> double_[bind(add_operand(), _val, _1)])
| (lit('-') >> double_[bind(sub_operand(), _val, _1)])
);
哎呀,太漂亮了。
但是,不用担心,你也可以调整它们:step 5
phx::function<add_operand> add_;
phx::function<sub_operand> sub_;
auto parser =
double_ [_val = _1]
>> *( (lit('+') >> double_[add_(_val, _1)])
| (lit('-') >> double_[sub_(_val, _1)])
);
最后,通过使用简单的AST,你可以完全没有任何语义动作:
rule<iterator_type, term<add>() , ascii::space_type> add_term;
rule<iterator_type, term<subtract>(), ascii::space_type> sub_term;
rule<iterator_type, expression() , ascii::space_type> parser;
add_term = '+' >> double_;
sub_term = '-' >> double_;
parser = double_ >> *(add_term|sub_term);
现在我们解析表达式AST:
expression result;
ok = phrase_parse(begin, end, parser, ascii::space, result);
我们使用eval
函数打印结果:
std::cout << "parsed, result = " << eval(result) << std::endl;
它是如何工作的?亲眼看看:
#define BOOST_SPIRIT_USE_PHOENIX_V3
#include <boost/fusion/adapted/struct.hpp>
#include <boost/spirit/include/qi.hpp>
/////////////////
// AST
template <typename> struct term {
term(double value=0) : value(value) {}
double value;
};
using operation = boost::variant<term<struct add>, term<struct subtract> >;
struct expression
{
double initial;
std::vector<operation> operations;
};
BOOST_FUSION_ADAPT_STRUCT(expression, (double, initial)(std::vector<operation>,operations))
// End of AST
/////////////////
double eval(expression const& e)
{
double result = e.initial;
struct visitor : boost::static_visitor<> {
double& _v; visitor(double& ref) : _v(ref) {}
void operator()(term<add> const& rhs) const { _v += rhs.value; }
void operator()(term<subtract> const& rhs) const { _v -= rhs.value; }
};
for(auto& o : e.operations)
boost::apply_visitor(visitor(result), o);
return result;
}
int main()
{
const std::string INPUT_DATA = "12e-1 + 3.4 - .67";
typedef std::string::const_iterator iterator_type;
iterator_type begin = std::begin(INPUT_DATA);
iterator_type end = std::end(INPUT_DATA);
namespace qi = boost::spirit::qi;
namespace ascii = boost::spirit::qi::ascii;
bool ok;
expression result;
{
using namespace qi;
rule<iterator_type, term<add>() , ascii::space_type> add_term;
rule<iterator_type, term<subtract>(), ascii::space_type> sub_term;
rule<iterator_type, expression() , ascii::space_type> parser;
add_term = '+' >> double_;
sub_term = '-' >> double_;
parser = double_ >> *(add_term|sub_term);
ok = phrase_parse(begin, end, parser, ascii::space, result);
}
if (ok && begin == end)
std::cout << "parsed, result = " << eval(result) << std::endl;
else
std::cout << "not parsed" << std::endl;
}