我正在研究倒排索引的搜索程序。索引本身是一个字典,其键是术语,其值本身是短文档的字典,ID号作为键,其文本内容作为值。
要执行“AND”搜索两个术语,我需要与他们的帖子列表(词典)相交。在Python中做这个的明确(不一定是过于聪明)的方法是什么?我开始尝试使用iter
:
p1 = index[term1]
p2 = index[term2]
i1 = iter(p1)
i2 = iter(p2)
while ... # not sure of the 'iter != end 'syntax in this case
...
答案 0 :(得分:101)
一个鲜为人知的事实是,您不需要构建set
来执行此操作:
在Python 2中:
In [78]: d1 = {'a': 1, 'b': 2}
In [79]: d2 = {'b': 2, 'c': 3}
In [80]: d1.viewkeys() & d2.viewkeys()
Out[80]: {'b'}
在Python 3中将viewkeys
替换为keys
;这同样适用于viewvalues
和viewitems
。
来自viewitems
的文档:
In [113]: d1.viewitems??
Type: builtin_function_or_method
String Form:<built-in method viewitems of dict object at 0x64a61b0>
Docstring: D.viewitems() -> a set-like object providing a view on D's items
对于较大的dict
s,这也比构建set
然后相交它们稍快一些:
In [122]: d1 = {i: rand() for i in range(10000)}
In [123]: d2 = {i: rand() for i in range(10000)}
In [124]: timeit d1.viewkeys() & d2.viewkeys()
1000 loops, best of 3: 714 µs per loop
In [125]: %%timeit
s1 = set(d1)
s2 = set(d2)
res = s1 & s2
1000 loops, best of 3: 805 µs per loop
For smaller `dict`s `set` construction is faster:
In [126]: d1 = {'a': 1, 'b': 2}
In [127]: d2 = {'b': 2, 'c': 3}
In [128]: timeit d1.viewkeys() & d2.viewkeys()
1000000 loops, best of 3: 591 ns per loop
In [129]: %%timeit
s1 = set(d1)
s2 = set(d2)
res = s1 & s2
1000000 loops, best of 3: 477 ns per loop
我们在这里比较纳秒,这可能与您有关,也可能没有关系。在任何情况下,您都会获得set
,因此使用viewkeys
/ keys
可以消除一些混乱。
答案 1 :(得分:63)
In [1]: d1 = {'a':1, 'b':4, 'f':3}
In [2]: d2 = {'a':1, 'b':4, 'd':2}
In [3]: d = {x:d1[x] for x in d1 if x in d2}
In [4]: d
Out[4]: {'a': 1, 'b': 4}
答案 2 :(得分:60)
您可以轻松计算集合的交集,因此可以从键创建集合并将它们用于交集:
keys_a = set(dict_a.keys())
keys_b = set(dict_b.keys())
intersection = keys_a & keys_b # '&' operator is used for set intersection
答案 3 :(得分:13)
在Python 3中,您可以使用
intersection = dict(dict1.items() & dict2.items())
union = dict(dict1.items() | dict2.items())
difference = dict(dict1.items() ^ dict2.items())
答案 4 :(得分:2)
使用一个简单的类来包装字典实例,该类可以获得您想要的两个值
class DictionaryIntersection(object):
def __init__(self,dictA,dictB):
self.dictA = dictA
self.dictB = dictB
def __getitem__(self,attr):
if attr not in self.dictA or attr not in self.dictB:
raise KeyError('Not in both dictionaries,key: %s' % attr)
return self.dictA[attr],self.dictB[attr]
x = {'foo' : 5, 'bar' :6}
y = {'bar' : 'meow' , 'qux' : 8}
z = DictionaryIntersection(x,y)
print z['bar']
答案 5 :(得分:2)
好的,这是Python3中上面代码的通用版本。 它被优化为使用足够快的理解和类似集合的dict视图。
函数与任意多个dicts相交,并返回带有公共键的dict和每个公用键的一组公共值:
def dict_intersect(*dicts):
comm_keys = dicts[0].keys()
for d in dicts[1:]:
# intersect keys first
comm_keys &= d.keys()
# then build a result dict with nested comprehension
result = {key:{d[key] for d in dicts} for key in comm_keys}
return result
用法示例:
a = {1: 'ba', 2: 'boon', 3: 'spam', 4:'eggs'}
b = {1: 'ham', 2:'baboon', 3: 'sausages'}
c = {1: 'more eggs', 3: 'cabbage'}
res = dict_intersect(a, b, c)
# Here is res (the order of values may vary) :
# {1: {'ham', 'more eggs', 'ba'}, 3: {'spam', 'sausages', 'cabbage'}}
这里的dict值必须是可以清除的,如果不是,你可以简单地将set括号{}更改为list []:
result = {key:[d[key] for d in dicts] for key in comm_keys}
答案 6 :(得分:0)
您的问题不够精确,无法给出单个答案。
如果要与帖子(credits to James)中的ID
相交,请执行以下操作:
common_ids = p1.keys() & p2.keys()
但是,如果要迭代文档,则必须考虑哪个帖子具有优先级,我假设它是p1
。要迭代common_ids
的文档,collections.ChainMap
将是最有用的:
from collections import ChainMap
intersection = {id: document
for id, document in ChainMap(p1, p2)
if id in common_ids}
for id, document in intersection:
...
或者如果您不想创建单独的intersection
字典:
from collections import ChainMap
posts = ChainMap(p1, p2)
for id in common_ids:
document = posts[id]
如果要与两个帖子的项目相交,这意味着要匹配ID
和文档,请使用下面的代码(credits to DCPY)。但是,这仅在您要查找术语重复项时有用。
duplicates = dict(p1.items() & p2.items())
for id, document in duplicates:
...
p1
'AND'p2
。如果通过“ 'AND'搜索”并使用iter
来搜索两者帖子,那么collections.ChainMap
最好遍历(几乎)多个帖子中的所有项目:
from collections import ChainMap
for id, document in ChainMap(p1, p2):
...
答案 7 :(得分:0)
def two_keys(term_a, term_b, index):
doc_ids = set(index[term_a].keys()) & set(index[term_b].keys())
doc_store = index[term_a] # index[term_b] would work also
return {doc_id: doc_store[doc_id] for doc_id in doc_ids}
def n_keys(terms, index):
doc_ids = set.intersection(*[set(index[term].keys()) for term in terms])
doc_store = index[term[0]]
return {doc_id: doc_store[doc_id] for doc_id in doc_ids}
In [0]: index = {'a': {1: 'a b'},
'b': {1: 'a b'}}
In [1]: two_keys('a','b', index)
Out[1]: {1: 'a b'}
In [2]: n_keys(['a','b'], index)
Out[2]: {1: 'a b'}
我建议将您的索引从
更改index = {term: {doc_id: doc}}
有两个索引,一个是术语,然后是一个单独的索引,用于保存值
term_index = {term: set([doc_id])}
doc_store = {doc_id: doc}
那样您就不会存储相同数据的多个副本
答案 8 :(得分:0)
d1 = {'a':1}
d2 = {'b':2, 'a':1}
{x:d1[x] for x in d1 if x in d2 and d1[x] == d2[x]}
>> {'a':1}