我有两个向量r
和s
。我想找到这两个数组的外部差异,而不是像下面的
r = rnorm(100000)
s = c(0.02, 0.04, 0.3, 0.43, 0.5, 0.7, 0.8, 0.9)
res = t(pmax(outer(r, s, "-"), 0))
system.time({
res = t(pmax(outer(r, s, "-"), 0))
})
## system elapsed
## 0.05 0.00 0.05
或
system.time({
x = pmax(r - rep(s, each = length(r)), 0)
res = matrix(x, nrow = length(s), byrow = TRUE)
})
## system elapsed
## 0.05 0.00 0.05
如何在R中加快结果x?
答案 0 :(得分:2)
通过单独运行outer
函数以及像这样的子集零< 0
条目,性能稍快一点......
res1 <- t( outer( r , s , "-" ) )
res1[ res1 < 0 ] <- 0
但如果您想要更快的速度,请尝试使用Rcpp
。这很简单,只需运行以下代码片段....
if( ! require( Rcpp ) ) install.packages( "Rcpp" )
Rcpp::cppFunction( '
NumericMatrix gtzero(NumericVector r , NumericVector s){
int cols = r.size();
int rows = s.size();
NumericMatrix out(rows, cols);
for( int i = 0; i < cols; i++){
NumericMatrix::Column ncol = out( _, i );
ncol = ifelse( r[i] - s > 0 , r[i] - s , 0 );
}
return out;
}
')
然后使用这样的函数:
gtzero( r , s )
结果比使用outer
和pmax
快6倍,比outer
然后[
子集快3倍:
require( microbenchmark )
bm <- microbenchmark( eval( rose.baseR ) , eval( simon.baseR ) , eval( simon.Rcpp ) )
print( bm , "relative" , order = "median" , digits = 2 )
#Unit: relative
# expr min lq median uq max neval
# eval(simon.Rcpp) 1 1.0 1.0 1.0 1.0 100
# eval(simon.baseR) 3 3.1 3.2 3.2 1.5 100
# eval(rose.baseR) 3 3.4 6.0 5.9 1.8 100
并给出完全相同的结果:
identical( res0 , res2 )
#[1] TRUE
评估了以下表达式:
set.seed(123)
r = rnorm(100000)
s = c(0.02, 0.04, 0.3, 0.43, 0.5, 0.7, 0.8, 0.9)
rose.baseR <- quote({
res0 <- t(pmax(outer(r, s, "-"), 0))
})
simon.baseR <- quote({
res1 <- outer( r , s , "-" )
res1[ res1 < 0 ] <- 0
})
simon.Rcpp <- quote({
res2 <- gtzero(r,s)
})
答案 1 :(得分:1)
关注@ thelatemail的评论:
fun1 <- function(r,s) t(pmax(outer(r, s, "-"), 0))
fun2 <- function(r,s) {
x = pmax(r - rep(s, each = length(r)), 0)
matrix(x, nrow = length(s), byrow = TRUE)
}
fun3 <- function(r,s) {
dr <- length(r)
ds <- length(s)
R <- rep(s, rep.int(length(r), length(s)))
S <- rep(r, times = ceiling(length(s)/length(r)))
res <- pmax(S - R, 0)
dim(res) <- c(dr, ds)
t(res)
}
library(microbenchmark)
microbenchmark(res1 <- fun1(r,s),
res2 <- fun2(r,s),
res3 <- fun3(r,s),
times=20)
# Unit: milliseconds
# expr min lq median uq max neval
# res1 <- fun1(r, s) 43.28387 46.68182 66.03417 78.78109 83.75569 20
# res2 <- fun2(r, s) 50.52941 54.36576 56.77067 60.87218 91.14043 20
# res3 <- fun3(r, s) 34.18374 35.37835 37.97405 40.10642 70.78626 20
identical(res1, res3)
#[1] TRUE