是否有内置/快速方法可以使用字典键列表来获取相应项目列表?
例如我有:
>>> mydict = {'one': 1, 'two': 2, 'three': 3}
>>> mykeys = ['three', 'one']
如何使用mykeys
将字典中的相应值作为列表获取?
>>> mydict.WHAT_GOES_HERE(mykeys)
[3, 1]
答案 0 :(得分:169)
列表理解似乎是一种很好的方法:
>>> [mydict[x] for x in mykeys]
[3, 1]
答案 1 :(得分:84)
除了list-comp之外的其他几种方式:
map(mydict.__getitem__, mykeys)
None
构建列表:map(mydict.get, mykeys)
或者,使用operator.itemgetter
可以返回元组:
from operator import itemgetter
myvalues = itemgetter(*mykeys)(mydict)
# use `list(...)` if list is required
注意:在Python3中,map
返回迭代器而不是列表。使用list(map(...))
获取列表。
答案 2 :(得分:37)
一点速度比较:
Python 2.7.11 |Anaconda 2.4.1 (64-bit)| (default, Dec 7 2015, 14:10:42) [MSC v.1500 64 bit (AMD64)] on win32
In[1]: l = [0,1,2,3,2,3,1,2,0]
In[2]: m = {0:10, 1:11, 2:12, 3:13}
In[3]: %timeit [m[_] for _ in l] # list comprehension
1000000 loops, best of 3: 762 ns per loop
In[4]: %timeit map(lambda _: m[_], l) # using 'map'
1000000 loops, best of 3: 1.66 µs per loop
In[5]: %timeit list(m[_] for _ in l) # a generator expression passed to a list constructor.
1000000 loops, best of 3: 1.65 µs per loop
In[6]: %timeit map(m.__getitem__, l)
The slowest run took 4.01 times longer than the fastest. This could mean that an intermediate result is being cached
1000000 loops, best of 3: 853 ns per loop
In[7]: %timeit map(m.get, l)
1000000 loops, best of 3: 908 ns per loop
In[33]: from operator import itemgetter
In[34]: %timeit list(itemgetter(*l)(m))
The slowest run took 9.26 times longer than the fastest. This could mean that an intermediate result is being cached
1000000 loops, best of 3: 739 ns per loop
所以列表理解和itemgetter是最快的方法。
更新: 对于大型随机列表和地图,我的结果有点不同:
Python 2.7.11 |Anaconda 2.4.1 (64-bit)| (default, Dec 7 2015, 14:10:42) [MSC v.1500 64 bit (AMD64)] on win32
In[2]: import numpy.random as nprnd
l = nprnd.randint(1000, size=10000)
m = dict([(_, nprnd.rand()) for _ in range(1000)])
from operator import itemgetter
import operator
f = operator.itemgetter(*l)
%timeit f(m)
%timeit list(itemgetter(*l)(m))
%timeit [m[_] for _ in l] # list comprehension
%timeit map(m.__getitem__, l)
%timeit list(m[_] for _ in l) # a generator expression passed to a list constructor.
%timeit map(m.get, l)
%timeit map(lambda _: m[_], l)
1000 loops, best of 3: 1.14 ms per loop
1000 loops, best of 3: 1.68 ms per loop
100 loops, best of 3: 2 ms per loop
100 loops, best of 3: 2.05 ms per loop
100 loops, best of 3: 2.19 ms per loop
100 loops, best of 3: 2.53 ms per loop
100 loops, best of 3: 2.9 ms per loop
因此,在这种情况下,明显的赢家是f = operator.itemgetter(*l); f(m)
,而明确的局外人:map(lambda _: m[_], l)
。
Python 3.6.4的更新:
import numpy.random as nprnd
l = nprnd.randint(1000, size=10000)
m = dict([(_, nprnd.rand()) for _ in range(1000)])
from operator import itemgetter
import operator
f = operator.itemgetter(*l)
%timeit f(m)
%timeit list(itemgetter(*l)(m))
%timeit [m[_] for _ in l] # list comprehension
%timeit list(map(m.__getitem__, l))
%timeit list(m[_] for _ in l) # a generator expression passed to a list constructor.
%timeit list(map(m.get, l))
%timeit list(map(lambda _: m[_], l)
1.66 ms ± 74.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
2.1 ms ± 93.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.58 ms ± 88.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.36 ms ± 60.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.98 ms ± 142 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.7 ms ± 284 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
3.14 ms ± 62.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
因此,Python 3.6.4的结果几乎相同。
答案 3 :(得分:11)
试试这个:
Slingshot.GoogleCloud.directiveDefault.GoogleSecretKey = Assets.getText('google-cloud-service-key.pem');
Slingshot.fileRestrictions( "myDefinedDirective", {
allowedFileTypes: [ "image/png", "image/jpeg", "image/gif" ],
maxSize: 1 * 1024 * 1024
});
Slingshot.createDirective( "myDefinedDirective", Slingshot.GoogleCloud, {
GoogleAccessId: "00b4903a97ce39dcfd2fdcd89772b588fdf77d22f74b0a5e57ea9553ce88d4d7",
bucket: "img_appengine",
acl: "public-read",
authorize: function () {
return true;
},
key: function ( file ) {
var user = Meteor.users.findOne( this.userId );
return user.emails[0].address + "/" + file.name;
}
});
答案 4 :(得分:8)
以下是三种方式。
找不到密钥时提升await
:
KeyError
缺失密钥的默认值。
result = [mapping[k] for k in iterable]
跳过丢失的钥匙。
result = [mapping.get(k, default_value) for k in iterable]
答案 5 :(得分:7)
试试这个:
mydict = {'one': 1, 'two': 2, 'three': 3}
mykeys = ['three', 'one'] # if there are many keys, use a set
[mydict[k] for k in mykeys]
=> [3, 1]
答案 6 :(得分:1)
Pandas非常优雅地做到这一点,尽管列表理解总是在技术上更像Pythonic。我现在没有时间进行速度比较(稍后我会回来把它放进去):
import pandas as pd
mydict = {'one': 1, 'two': 2, 'three': 3}
mykeys = ['three', 'one']
temp_df = pd.DataFrame().append(mydict)
# You can export DataFrames to a number of formats, using a list here.
temp_df[mykeys].values[0]
# Returns: array([ 3., 1.])
# If you want a dict then use this instead:
# temp_df[mykeys].to_dict(orient='records')[0]
# Returns: {'one': 1.0, 'three': 3.0}
答案 7 :(得分:1)
kmeans
答案 8 :(得分:0)
或者只是mydict.keys()
这是对字典的内置方法调用。还要探索mydict.values()
和mydict.items()
。
//啊,OP帖子让我困惑。
答案 9 :(得分:0)
关闭Python: efficient way to create a list from dict values with a given order
在不构建列表的情况下检索密钥:
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import collections
class DictListProxy(collections.Sequence):
def __init__(self, klist, kdict, *args, **kwargs):
super(DictListProxy, self).__init__(*args, **kwargs)
self.klist = klist
self.kdict = kdict
def __len__(self):
return len(self.klist)
def __getitem__(self, key):
return self.kdict[self.klist[key]]
myDict = {'age': 'value1', 'size': 'value2', 'weigth': 'value3'}
order_list = ['age', 'weigth', 'size']
dlp = DictListProxy(order_list, myDict)
print(','.join(dlp))
print()
print(dlp[1])
输出:
value1,value3,value2
value3
哪个匹配列表给出的顺序
答案 10 :(得分:-1)
reduce(lambda x,y: mydict.get(y) and x.append(mydict[y]) or x, mykeys,[])
如果键中没有键。