什么是最频繁使用的levenshtein算法

时间:2013-08-26 10:15:43

标签: javascript algorithm levenshtein-distance

对于客户端搜索工具,我需要找到一个单词的Levenshtein距离以及数百万个其他单词。用户应该能够将大约二十个单词的短文与一本书进行比较。用户可以通过查找书中文本的最具特征的单词的位置来做到这一点。 '寻找位置'并不意味着寻找完全匹配,但几乎与levenshtein相匹配。我从已经可用的实现开始,但我需要更快的速度。我最终得到了这个:

var rowA = new Uint16Array(1e6);
var rowB = new Uint16Array(1e6);
function levenshtein(s1, s2) {
    var s1_len = s1.length, s2_len = s2.length, i1, i2 = 0, a, b, c, c2, i = 0;
    if (s1_len === 0)
        return s2_len;
    if (s2_len === 0)
        return s1_len;
    while (i < s1_len)
        rowA[i] = ++i;
    while (i2 < s2_len) {
        c2 = s2[i2];
        a = i2;
        ++i2;
        b = i2;
        for (i1 = 0; i1 < s1_len; ++i1) {
            c = a + (s1[i1] !== c2 );
            a = rowA[i1];
            b = b < a ? (b < c ? b + 1 : c) : (a < c ? a + 1 : c);
            rowB[i1] = b;
        }
        if (i2 === s2_len)
            return b;
        c2 = s2[i2];
        a = i2;
        ++i2;
        b = i2;
        for (i1 = 0; i1 < s1_len; ++i1) {
            c = a + (s1[i1] !== c2 );
            a = rowB[i1];
            b = b < a ? (b < c ? b + 1 : c) : (a < c ? a + 1 : c);
            rowA[i1] = b;
        }
    }
    return b;
}

如您所见,我使用了将对象放置在函数之外以便重新使用它们的技术。我也稍微通过线性化循环来重复自己。会更快吗?我很好奇你的建议。

更新: 来自Bergi的提示以及更多的想法后我来到这个解决方案:

    var row = new Uint16Array(1e6);
    function levenshtein(s1, s2) {
        var s1_len = s1.length, s2_len = s2.length, i2 = 1, a, b = 0, c, c2, i1 = 0;
        if (s1_len === 0)
            return s2_len;
        if (s2_len === 0)
            return s1_len;
        c2 = s2[0];
        if (s1[0] === c2) {
            while (i1 < s1_len) {
                row[i1] = i1++;
            }
            b = s1_len - 1;
        } else {
            row[0] = 1;
            ++b;
            if (s1_len > 1)
                for (i1 = 1; i1 < s1_len; ++i1) {
                    if (s1[i1] === c2) {
                        row[i1] = b;
                        for (++i1; i1 < s1_len; ++i1) {
                            row[i1] = ++b;
                        }
                    } else {
                        row[i1] = ++b;
                    }
                }
        }
        if (s2_len > 1)
            while (i2 < s2_len) {
                c2 = s2[i2];
                c = i2 + (s1[0] !== c2);
                a = row[0];
                ++i2;
                b = i2 < a ? (i2 < c ? i2 + 1 : c) : (a < c ? a + 1 : c);
                row[0] = b;
                if (s1_len > 1) {
                    for (i1 = 1; i1 < s1_len; ++i1) {
                        c = a + (s1[i1] !== c2);
                        a = row[i1];
                        b = b < a ? (b < c ? b + 1 : c) : (a < c ? a + 1 : c);
                        row[i1] = b;
                    }
                }
            }
        return b;
    }

这又快得多了。我无法挤出更多。我一直在寻找其他想法,并会尝试更多。

1 个答案:

答案 0 :(得分:2)

由于您反复比较同一个词,因此可以通过在那里使用部分应用程序和缓存来提高性能:

function levenshtein(s1) {
    var row0 = [], row1 = [], s1_len = s1.length;
    if (s1_len === 0)
        return function(s2) {
            return s2.length;
        };
    return function(s2) {
        var s2_len = s2.length, s1_idx, s2_idx = 0, a, b, c, c2, i = 0;
        if (s2_len === 0)
            return s1_len;
        …
        return b;
    };
}
  

我也稍微通过线性化循环来重复自己。

不确定它是否变得快得多,但你可以省略其中一个数组 - 你不需要以交替的方式读/写它们:

function levenshtein(s1) {
    var s1_len = s1.length, row = new Array(s1_len);
    if (s1_len === 0)
        return function(s2) {
            return s2.length;
        };
    return function(s2) {
        var s2_len = s2.length, s1_idx, s2_idx = 0, a, b, c, c2, i = 0;
        if (s2_len === 0)
            return s1_len;
        while (i < s1_len)
           row[i] = ++i;
        while (s2_idx < s2_len) {
            c2 = s2[s2_idx];
            a = s2_idx;
            ++s2_idx;
            b = s2_idx;
            for (s1_idx = 0; s1_idx < s1_len; ++s1_idx) {
                c = a + (s1[s1_idx] === c2 ? 0 : 1);
                a = row[s1_idx];
                b = b < a ? (b < c ? b + 1 : c) : (a < c ? a + 1 : c);
                row[s1_idx] = b;
            }
        }
        return b;
    };
}

如果不将数百万字放在专用数据结构中(例如前缀trie),我认为不能进一步优化。