为什么haskell中的两个版本的合并排序之间存在1000x的性能差异

时间:2013-08-21 19:49:07

标签: performance haskell

编辑:

事实证明,慢速版本实际上是插入排序O(n ^ 2)而不是解释性能问题的合并排序O(n log n)。我想我会为未来的读者节省趟代码来发现这个答案的痛苦。


ORIGINAL BEGINS HERE ------------------------------------------- < / p>

我在haskell中编写了两个版本的合并排序,我不能理解为什么这个版本比另一个快1000倍。在这两种情况下,我们首先将列表中的项目排序为创建列表列表的列表。然后我们将列表配对并合并它们,直到只剩下一个列表。问题似乎是我在慢版本中调用“doMerge(x1:x2:xs)= doMerge $ merge x1 x2:doMerge xs”但在快速版本中调用doMerge(mergePairs xs)。我对1000x的速度差异感到惊讶!

-- Better version: takes 0.34 seconds to sort a 100,000 integer list.
betMergeSort :: [Int] -> [Int]
betMergeSort list = doMerge $ map (\x -> [x]) list
  where
    doMerge :: [[Int]] -> [Int]
    doMerge [] = []
    doMerge [xs] = xs
    doMerge xs = doMerge (mergePairs xs)

    mergePairs :: [[Int]] -> [[Int]]
    mergePairs (x1:x2:xs) = merge x1 x2 : mergePairs xs
    mergePairs xs = xs

    -- expects two sorted lists and returns one sorted list.
    merge :: [Int] -> [Int] -> [Int]
    merge [] ys = ys
    merge xs [] = xs
    merge (x:xs) (y:ys) = if x <= y
                            then x : merge xs (y:ys)
                            else y : merge (x:xs) ys


-- Slow version: takes 350 seconds to sort a 100,000 integer list.
slowMergeSort :: [Int] -> [Int]
slowMergeSort list = head $ doMerge $ map (\x -> [x]) list
  where
    doMerge :: [[Int]] -> [[Int]]
    doMerge [] = []
    doMerge (oneList:[]) = [oneList]
    doMerge (x1:x2:xs) = doMerge $ merge x1 x2 : doMerge xs

    -- expects two sorted list and returns one sorted list.
    merge :: [Int] -> [Int] -> [Int]
    merge [] ys = ys
    merge xs [] = xs
    merge (x:xs) (y:ys) = if x <= y then x : merge xs (y:ys) else y : merge (x:xs) ys

查看分析器输出,很明显慢速版本正在分配 way 更多内存。我不知道为什么会这样。两个版本看起来都很相似。有人可以解释为什么分配如此不同?

slowMergeSort分析结果:

    Wed Aug 21 12:24 2013 Time and Allocation Profiling Report  (Final)

       mergeSort +RTS -sstderr -p -RTS s

    total time  =       12.02 secs   (12017 ticks @ 1000 us, 1 processor)
    total alloc = 17,222,571,672 bytes  (excludes profiling overheads)

COST CENTRE         MODULE  %time %alloc

slowMergeSort.merge Main     99.2   99.4


                                                                               individual     inherited
COST CENTRE               MODULE                             no.     entries  %time %alloc   %time %alloc

MAIN                      MAIN                                74           0    0.0    0.0   100.0  100.0
 main                     Main                               149           0    0.0    0.0   100.0  100.0
  main.sortedL            Main                               165           1    0.0    0.0    99.3   99.5
   slowMergeSort          Main                               167           1    0.0    0.0    99.3   99.5
    slowMergeSort.\       Main                               170       40000    0.0    0.0     0.0    0.0
    slowMergeSort.doMerge Main                               168       79999    0.0    0.0    99.2   99.5
     slowMergeSort.merge  Main                               169   267588870   99.2   99.4    99.2   99.4
  main.sortVersion        Main                               161           1    0.0    0.0     0.0    0.0
  randomInts              Main                               151           1    0.0    0.0     0.7    0.5
   force                  Main                               155           1    0.0    0.0     0.0    0.0
    force.go              Main                               156       40001    0.0    0.0     0.0    0.0
   randomInts.result      Main                               152           1    0.7    0.5     0.7    0.5

libMergeSort Profiling

    Wed Aug 21 12:23 2013 Time and Allocation Profiling Report  (Final)

       mergeSort +RTS -sstderr -p -RTS l

    total time  =        0.12 secs   (124 ticks @ 1000 us, 1 processor)
    total alloc = 139,965,768 bytes  (excludes profiling overheads)

COST CENTRE              MODULE  %time %alloc

randomInts.result        Main     66.9   64.0
libMergeSort.merge       Main     24.2   30.4
main                     Main      4.0    0.0
libMergeSort             Main      2.4    3.2
libMergeSort.merge_pairs Main      1.6    2.3


                                                                                    individual     inherited
COST CENTRE                    MODULE                             no.     entries  %time %alloc   %time %alloc

MAIN                           MAIN                                74           0    0.0    0.0   100.0  100.0
 main                          Main                               149           0    4.0    0.0   100.0  100.0
  main.sortedL                 Main                               165           1    0.0    0.0    28.2   35.9
   libMergeSort                Main                               167           1    2.4    3.2    28.2   35.9
    libMergeSort.\             Main                               171       40000    0.0    0.0     0.0    0.0
    libMergeSort.libMergeSort' Main                               168          17    0.0    0.0    25.8   32.7
     libMergeSort.merge_pairs  Main                               169       40015    1.6    2.3    25.8   32.7
      libMergeSort.merge       Main                               170      614711   24.2   30.4    24.2   30.4
  main.sortVersion             Main                               161           1    0.0    0.0     0.0    0.0
  randomInts                   Main                               151           1    0.0    0.0    67.7   64.0
   force                       Main                               155           1    0.0    0.0     0.8    0.0
    force.go                   Main                               156       40001    0.8    0.0     0.8    0.0
   randomInts.result           Main                               152           1   66.9   64.0    66.9   64.0

1 个答案:

答案 0 :(得分:16)

其中第二个是O(n^2),不应该使用,因为它是错误的算法(不应该称为mergesort)。

doMerge (x1:x2:xs) = doMerge $ merge x1 x2 : doMerge xs

完整地排序xs,它只是一个比原始列表短的常量。将非常短的列表与非常长的列表合并等同于插入,因此我们看到这实际上只是插入排序。 mergesort的整个点是分而治之,这不是分而治之。随着列表长度的增加,速度比将继续恶化。

第一种是合适的合并排序,因为它合并了大约均匀的列表。