如何在image.plot中处理R中的零日志?

时间:2013-08-20 23:47:13

标签: r

我有一个矩阵,条目都是概率。大多数条目的概率非常低。有些人有零。我需要记录矩阵。但是,由于矩阵中有零,因此R为这些零条目生成-inf。我的目标是将此日志(矩阵)提供给image.plot()。当我将它提供给image.plot时,我不断收到此错误:

Error in seq.default(minz + binwidth/2, maxz - binwidth/2, by = binwidth) : 
  invalid (to - from)/by in seq(.)

这里有什么解决方案可以帮助我解决这个问题吗?

这是矩阵的样子:

                  0          1          2          3         4         5         6
 [1,] -0.0007854138 -8.9132811 -10.011893 -10.705041 -9.606428 -9.318746      -Inf
 [2,] -0.3402118357 -1.6137090  -2.742625  -4.215836 -5.721434 -7.121522 -9.606428
 [3,] -0.2912175507 -2.0296478  -3.521929  -4.275321 -4.426519 -4.187369 -3.715705
 [4,] -1.5244380532 -0.7048802  -2.001368  -3.405243 -3.713864 -3.143919 -3.781412
 [5,] -0.7572491288 -0.7487709  -3.981208  -5.110329 -5.228577 -5.095569 -5.293395
 [6,] -0.0007629648       -Inf  -8.759130  -7.613998 -9.606428      -Inf      -Inf
 [7,] -0.0020658381 -7.4861648  -7.526987  -7.094123 -9.318746      -Inf      -Inf
 [8,] -0.0295715883 -6.7160566  -7.208533  -6.610696 -6.485533 -6.813220 -6.387552
 [9,] -0.0032128722 -6.7160566  -7.613998  -7.871827 -7.760602 -8.759130 -8.759130
[10,] -0.4869248130 -1.3225132  -2.518576  -3.768698 -5.140520 -6.183252 -7.208533
               7          8          9
 [1,]       -Inf -10.705041 -10.011893
 [2,]       -Inf       -Inf  -7.149693
 [3,]  -4.965248  -5.968842  -6.428374
 [4,]  -4.696227  -5.091913  -4.669559
 [5,]  -5.163777  -5.468599  -6.577906
 [6,]       -Inf       -Inf       -Inf
 [7,]       -Inf       -Inf       -Inf
 [8,]  -6.627503  -6.456545  -6.400976
 [9,] -10.011893 -10.011893       -Inf
[10,]  -8.402456  -7.814669  -6.546158

这是结构:

structure(c(0.999214894571557, 0.71161956034096, 0.747353073126963, 
0.217743382682817, 0.468954688200987, 0.999237326155227, 0.997936294302378, 
0.970861372812921, 0.996792283535218, 0.614513234634365, 0.000134589502018843, 
0.199147599820547, 0.13138178555406, 0.49416778824585, 0.472947510094213, 
0, 0.000560789591745177, 0.00121130551816958, 0.00121130551816958, 
0.266464782413638, 4.48631673396142e-05, 0.0644010767160162, 
0.0295423956931359, 0.135150291610588, 0.0186630776132795, 0.00015702108568865, 
0.00053835800807537, 0.000740242261103634, 0.000493494840735756, 
0.0805742485419471, 2.24315836698071e-05, 0.0147599820547331, 
0.0139075818752804, 0.0331987438313145, 0.00603409600717811, 
0.000493494840735756, 0.000829968595782862, 0.00134589502018843, 
0.000381336922386721, 0.0230820995962315, 6.72947510094213e-05, 
0.00327501121579183, 0.0119560340960072, 0.0243831314490803, 
0.00536114849708389, 6.72947510094213e-05, 8.97263346792284e-05, 
0.00152534768954688, 0.000426200089726335, 0.00585464333781965, 
8.97263346792284e-05, 0.000807537012113055, 0.0151861821444594, 
0.0431135038133692, 0.00612382234185734, 0, 0, 0.00109914759982055, 
0.00015702108568865, 0.00206370569762225, 0, 6.72947510094213e-05, 
0.0243382682817407, 0.022790489008524, 0.00502467474203679, 0, 
0, 0.00168236877523553, 0.00015702108568865, 0.000740242261103634, 
0, 0, 0.00697622252131, 0.00912965455361149, 0.00572005383580081, 
0, 0, 0.00132346343651862, 4.48631673396142e-05, 0.000224315836698071, 
2.24315836698071e-05, 0, 0.00255720053835801, 0.00614625392552714, 
0.00421713772992373, 0, 0, 0.0015702108568865, 4.48631673396142e-05, 
0.000403768506056528, 4.48631673396142e-05, 0.000785105428443248, 
0.00161507402422611, 0.00937640197397936, 0.00139075818752804, 
0, 0, 0.00165993719156572, 0, 0.00143562135486765), .Dim = c(10L, 
10L), .Dimnames = list(NULL, c("0", "1", "2", "3", "4", "5", 
"6", "7", "8", "9")))

5 个答案:

答案 0 :(得分:4)

如果这些零点是由物理测量引起的,它应该产生肯定的结果,但由于技术原因而不能这样做,那么将零点检测的下限替换为0可能是合理的。

 M2 <- M
 print( min(M[M!=0]), digits=16)
#[1] 2.24315836698071e-05
 M2[M2==0] <- 0.5*min(M[M!=0])
 image(M2)
 image(log(M2))

enter image description here

答案 1 :(得分:2)

一个简单的技巧是从log1 = 0开始加1,这样0后的单元格在转换后仍然会有0。

  k<-matrix(c(1:8,0,0),nrow=2,ncol=5)

> k
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    3    5    7    0
[2,]    2    4    6    8    0
log(k)
          [,1]     [,2]     [,3]     [,4] [,5]
[1,] 0.0000000 1.098612 1.609438 1.945910 -Inf
[2,] 0.6931472 1.386294 1.791759 2.079442 -Inf

log(k+1)
          [,1]     [,2]     [,3]     [,4] [,5]
[1,] 0.6931472 1.386294 1.791759 2.079442    0
[2,] 1.0986123 1.609438 1.945910 2.197225    0

答案 2 :(得分:2)

seq()抛出了except,它不能将-inf作为其任何一个参数。您可以使用以下代码获得完全相同类型的错误:

> seq(-log(0), 0, 50)
Error in seq.default(-log(0), 0, 50) : invalid (to - from)/by in seq(.)

要避免它,请遵循@Metrics的诀窍。虽然我建议不添加1.0,但添加一个非常小的值,例如1e-22,因为你的矩阵是一个概率矩阵。

答案 3 :(得分:2)

确实,日志图可能会使“条目之间的差异更明显”。但是,如果您的数据中有零,则表示您使用的是错误的。对数标度的点是为了说明数据的指数增长。但是,有零意味着:

  • 观察到的值不是由表现出指数的过程产生的 增长
  • 您需要以不同方式处理缺失值。

无论哪种方式,在你的情况下更好的方法是使用值的平方根。或者(n> 2) - 根如果你想要更加强调值的差异 - n 越高,差异越大。

根据@ flodel的建议,执行此操作的代码为:image.plot(sqrt(x)),或者更常见的是,某些image.plot(x^(1/n))的{​​{1}}。

希望这有帮助。

答案 4 :(得分:0)

无法在评论中粘贴多行代码,但此示例显示了我的意思:

> m=cbind(c(0,0.88,0.99),c(1,2,1),c(3,4,5))
> m=as.matrix(m)
> log(m)
            [,1]      [,2]     [,3]
[1,]        -Inf 0.0000000 1.098612
[2,] -0.12783337 0.6931472 1.386294
[3,] -0.01005034 0.0000000 1.609438
> m
     [,1] [,2] [,3]
[1,] 0.00    1    3
[2,] 0.88    2    4
[3,] 0.99    1    5