Density2d绘图使用另一个填充变量(类似于geom_tile)?

时间:2013-08-17 05:20:36

标签: r ggplot2

我正在尝试为我的最终项目绘制一张地图,我正试图在美国制作BLock的犯罪热图。

对于每个街区,我都有Lat,Lon和犯罪率的预测。它遵循这种结构:

Lat           /      Lon          /         Prediction
-76.0         /     40.0          /        125   
-76.120       /      40.5          /       145
-75.98        /      41.001        /         95

等等。

有没有办法绘制热图,显示预测为填充?

我认为这就是geom_tiles所做的,但是geom不起作用(可能是因为点间距不均匀)

任何帮助都会受到欢迎。请!

修改
这是我到目前为止所尝试的:
-geom_density2d:

ggplot(ny2,aes(x=GEO_CENTROID_LON,y=GEO_CENTROID_LON,fill=prediction))+geom_density2d()  

给我错误:“单位错误(tic_pos.c,”mm“):'x'和'units'的长度必须为> 0”

-geom_tiles:

ggplot(ny2,aes(x=GEO_CENTROID_LON,y=GEO_CENTROID_LON,fill=prediction))+geom_tile()  

生成具有适当比例的绘图,但不生成地图上显示的数据。

关于chloropeth,如果我发生整个美国的块级信息,它会起作用,但我找不到这样的数据。

可以找到数据的SUBSAMPLE here

2 个答案:

答案 0 :(得分:27)

首先,让我们加载数据:

data<-read.csv(file = "NY subsample.csv")

数据点

然后,让我们尝试绘制数据的基本位置和值:

require('ggplot2')
# start with points
pred.points <- ggplot(data = data,
       aes(x = GEO_CENTROID_LON,
           y = GEO_CENTROID_LAT,
           colour = prediction)) + 
  geom_point()
print(pred.points)
ggsave(filename = "NYSubsamplePredPoints.png",
       plot = p2,
       scale = 1,
       width = 5, height = 3,
       dpi = 300)

给了我们这个: enter image description here

分类数据

然后,您可以尝试使用stat_summary2d()

在二维区域绘制平均值
pred.stat <- ggplot(data = data,
                      aes(x = GEO_CENTROID_LON,
                          y = GEO_CENTROID_LAT,
                          z = prediction)) + 
  stat_summary2d(fun = mean)
print(pred.stat)
ggsave(filename = "NYSubsamplePredStat.png",
       plot = pred.stat,
       scale = 1,
       width = 5, height = 3,
       dpi = 300)

给出了每个方框中预测平均值的这个图。

enter image description here

Binned并使用自定义色彩映射和正确投影

接下来,我们可以设置容器大小,色标和修正投影:

# refine breaks and palette ----
require('RColorBrewer')
YlOrBr <- c("#FFFFD4", "#FED98E", "#FE9929", "#D95F0E", "#993404")
pred.stat.bin.width <- ggplot(data = data,
                    aes(x = GEO_CENTROID_LON,
                        y = GEO_CENTROID_LAT,
                        z = prediction)) + 
  stat_summary2d(fun = median, binwidth = c(.05, .05)) + 
  scale_fill_gradientn(name = "Median",
                       colours = YlOrBr,
                       space = "Lab") +
  coord_map()
print(pred.stat.bin.width)
ggsave(filename = "NYSubsamplePredStatBinWidth.png",
       plot = pred.stat.bin.width,
       scale = 1,
       width = 5, height = 3,
       dpi = 300)

给了我们这个:

enter image description here

在基本地图上绘制

最后,这里的数据覆盖在地图上。

require('ggmap')
map.in <- get_map(location = c(min(data$GEO_CENTROID_LON),
                               min(data$GEO_CENTROID_LAT),
                               max(data$GEO_CENTROID_LON),
                               max(data$GEO_CENTROID_LAT)),
                  source = "osm")
theme_set(theme_bw(base_size = 8))
pred.stat.map <- ggmap(map.in) %+% data + 
  aes(x = GEO_CENTROID_LON,
      y = GEO_CENTROID_LAT,
      z = prediction) +
  stat_summary2d(fun = median, 
                 binwidth = c(.05, .05),
                 alpha = 0.5) + 
  scale_fill_gradientn(name = "Median",
                       colours = YlOrBr,
                       space = "Lab") + 
  labs(x = "Longitude",
       y = "Latitude") +
  coord_map()
print(pred.stat.map)
ggsave(filename = "NYSubsamplePredStatMap.png",
       plot = pred.stat.map,
       scale = 1,
       width = 5, height = 3,
       dpi = 300)

enter image description here

设置色彩映射

最后,要将色彩映射设置为http://www.cadmaps.com/images/HeatMapImage.jpg,我们可以猜测色彩映射:

colormap <- c("Violet","Blue","Green","Yellow","Red","White")

再次进行绘图:

pred.stat.map.final <- ggmap(map.in) %+% data + 
  aes(x = GEO_CENTROID_LON,
      y = GEO_CENTROID_LAT,
      z = prediction) +
  stat_summary2d(fun = median, 
                 binwidth = c(.05, .05),
                 alpha = 1.0) + 
  scale_fill_gradientn(name = "Median",
                       colours = colormap,
                       space = "Lab") + 
  labs(x = "Longitude",
       y = "Latitude") +
  coord_map()
print(pred.stat.map.final)

enter image description here

答案 1 :(得分:2)

我仍然不确定你的目标是什么,但是如果你想要一张带有一些点和轮廓的地图,那是可能的。输出看起来像下面的截图;显然有很多方法可以调整。 (显示的州是康涅狄格州。)

screenshot

代码如下:

library(ggplot2)
library(maps)

mytext <- "GEOGRAPHY_ID GEO_CENTROID_LAT    GEO_CENTROID_LON    prediction
90012003024 41.364744   -73.373055  90.1
90012052001 41.488312   -73.381211  97.5
90012452002 41.300794   -73.467077  70.8
90012452003 41.319154   -73.479132  95.7
90012453001 41.293613   -73.456416  94.9
90012453003 41.284093   -73.493029  84.6
90012454001 41.263554   -73.462508  133.7
90010716002 41.181796   -73.196349  264.1
90010714003 41.183947   -73.198804  157.9
90010714004 41.185397   -73.200341  133.1
90010716001 41.184585   -73.195373  245.4
90010719001 41.195616   -73.203213  241.3
90010719002 41.191719   -73.20067   201.4
90010810001 41.222401   -73.155751  99.8
90012053002 41.437178   -73.396647  88.9
90012053003 41.451281   -73.413168  87.2
90012101001 41.400968   -73.458019  95.8
90012101002 41.394998   -73.449385  94.9
90012455002 41.270781   -73.52177   130
90012456001 41.360282   -73.530252  76
90012456002 41.288121   -73.507822  72.7
90012456003 41.313295   -73.528298  99.5
90010720002 41.187461   -73.206022  183.8
90010721001 41.189995   -73.216666  122.1
90010721003 41.180815   -73.216566  146.6
90010812001 41.233187   -73.117965  104.3
90012102003 41.393535   -73.440432  157.3
90012456004 41.296988   -73.522458  79.8
90012571001 41.613474   -73.503408  100.3
90012572001 41.203247   -73.202377  137.5
90012572002 41.194794   -73.192015  140
90010722002 41.195945   -73.210519  151.4
90010722003 41.193973   -73.214259  136.6
90010723001 41.203358   -73.20714   143.9
90010723002 41.198932   -73.206447  142.4
90010723003 41.203037   -73.212283  186.3
90010724001 41.208966   -73.201209  165.8
90010813001 41.246832   -73.131348  72.6
90010813003 41.246515   -73.111748  155.4
90012103003 41.402606   -73.440486  167.3
90012104002 41.390956   -73.434375  94.8
90012104004 41.381899   -73.431034  102.2
90012105001 41.369942   -73.437917  123.2
90012572003 41.195887   -73.197341  173.9
90012572004 41.198997   -73.199825  162.1
90010724002 41.209585   -73.20547   148.2
90010725001 41.212546   -73.215288  91.6
90010725002 41.208281   -73.212059  98.6
90010901002 41.287263   -73.250588  102.3
90010902003 41.266822   -73.23491   92
90012105002 41.353974   -73.458436  99
90012106001 41.383904   -73.465779  73.8
90012106002 41.382667   -73.457351  83.2
90012106003 41.387105   -73.458921  189.7
90010603003 41.211193   -73.280762  90.6
90010604001 41.1995 -73.306179  92.5
90010604002 41.181699   -73.295321  88.5
90010604003 41.171775   -73.283657  74.7
90010726004 41.222752   -73.235936  95.1
90010726005 41.211959   -73.228826  161.5
90010727001 41.225968   -73.207215  131.2
90010727002 41.214759   -73.208042  132.3
90012106004 41.390604   -73.45726   162.3
90012107012 41.399524   -73.464468  133.7
90012107013 41.396556   -73.471967  99.7
90012107021 41.386497   -73.468571  79
90010604004 41.167694   -73.309524  84.1
90010604005 41.195134   -73.325438  83.8
90010605001 41.155009   -73.2852    84.2
90010606001 41.139112   -73.283955  110.6
90010607002 41.147077   -73.261239  94.2
90010728001 41.224439   -73.198242  99.1
90010728002 41.217875   -73.197045  202.6
90010728003 41.210812   -73.195182  190.9
90010729001 41.216106   -73.185495  102.2
90010729002 41.221654   -73.19115   120.5
90010904004 41.228466   -73.191144  129.8
90010905001 41.245708   -73.153402  94.4
90012107022 41.390499   -73.47572   122
90012108003 41.395869   -73.494013  169
90010607004 41.162216   -73.266692  108.4
90010729003 41.208007   -73.192118  119.6
90010731002 41.209897   -73.173502  200.1
90010732001 41.199521   -73.157307  104
90010907002 41.292969   -73.213286  97.2
90012109002 41.422006   -73.509898  130.3
90012109003 41.408571   -73.469713  96.7
90012110002 41.427622   -73.478071  71
90010732002 41.199779   -73.15968   129.9
90010733001 41.194838   -73.161245  220.4
90010733002 41.196553   -73.167201  223.9
90010734001 41.200568   -73.177405  167.6
90010734003 41.202783   -73.185394  132.6
90011002001 41.320343   -73.199107  84.5
90011002002 41.3086 -73.220255  88
90011002004 41.331716   -73.221468  78.4
90012113001 41.445838   -73.445831  79.8
90010612001 41.179606   -73.224896  81.8
90010612002 41.181751   -73.232609  87.5
90010613001 41.175294   -73.231124  101
90010613002 41.173877   -73.239615  81.5
90010735001 41.196816   -73.182355  201
90010735002 41.193029   -73.183216  175.8
90010735003 41.19529    -73.184959  231.1
90010736001 41.194455   -73.177717  198.3
90011003002 41.341963   -73.192365  77.7
90011051001 41.233168   -73.263024  123.6
90011052002 41.285673   -73.287781  111.5
90012113003 41.441636   -73.436266  116.9
90012114001 41.430746   -73.428211  78.7
90012114002 41.447087   -73.427341  108.3
90012114003 41.422319   -73.420856  65.4
90010614002 41.167362   -73.237612  95.1
90010615001 41.154024   -73.24035   146
90010616001 41.137264   -73.264706  72.9
90010737003 41.190196   -73.163451  174.4
90010737004 41.191454   -73.168643  136.9
90010737005 41.188779   -73.168872  125.4
90010738001 41.190175   -73.175898  149.3
90010738002 41.188112   -73.176438  104.1
90011102011 41.30204    -73.07854   93.2
90011102021 41.292759   -73.089266  221.6
90011102022 41.277148   -73.094239  209
90012201003 41.450671   -73.524399  95.3
90012201004 41.464062   -73.509055  91.4
90012202001 41.494752   -73.495944  71.2
90010616002 41.131092   -73.255091  114.8
90010616003 41.126782   -73.269031  116.1
90010701001 41.155218   -73.22345   222
90010701003 41.1547 -73.228366  121.2
90010701004 41.158021   -73.229301  119.4
90010738003 41.189804   -73.178993  120.1
90010739001 41.190496   -73.1826    120
90010739002 41.187738   -73.18267   173.6
90010739003 41.186232   -73.18633   218.8
90010739004 41.190055   -73.185757  115.7
90010740001 41.182438   -73.180944  187.2
90010740002 41.181587   -73.17741   145.9
90012203001 41.521653   -73.470862  103.1
90012203002 41.487018   -73.45847   95.8
90012301002 41.442759   -73.311749  103.8
90010702001 41.161921   -73.22484   130.6
90010702002 41.163873   -73.22144   137.8
90010702003 41.15867    -73.219191  181.1
90010703001 41.160754   -73.21476   215.2
90010705001 41.167282   -73.191851  175
90010743001 41.18634    -73.159732  166.9
90010743002 41.182201   -73.158335  109
90010743003 41.180505   -73.162622  152.2
90010743004 41.178543   -73.168002  157.3
90010743005 41.181  -73.168064  143.4
90010743006 41.182831   -73.16868   122.4
90011103022 41.269651   -73.130548  88.6
90011104001 41.294908   -73.161871  111.3
90012302001 41.413873   -73.304276  93.1
90012303003 41.387196   -73.321197  118.5
90010705002 41.167522   -73.196366  213.2
90010706001 41.177971   -73.193067  236.6
90010706002 41.167732   -73.187421  227.7
90010709001 41.170459   -73.203877  159.7
90010709002 41.17138    -73.198856  186.7
90010710001 41.171339   -73.218595  126.6
90010744001 41.179957   -73.157483  135.6
90010744002 41.177069   -73.162353  133.4
90010744003 41.172159   -73.168866  185.4
90010744004 41.176011   -73.16636   169.5
90010801001 41.200673   -73.150037  105.6
90010801003 41.193386   -73.151688  140.3
90011105004 41.309581   -73.141151  77.3
90012304001 41.384815   -73.294462  118.4
90012304002 41.36671    -73.293527  94.8
90012304003 41.368872   -73.348572  194.7
90012305011 41.406865   -73.223661  89.3
90010710002 41.172463   -73.214353  184.7
90010712001 41.180827   -73.207841  133.3
90010712002 41.179002   -73.205237  206.9
90010801004 41.199783   -73.15404   140.2
90010802001 41.190012   -73.142391  106.3
90010802002 41.189527   -73.147431  86.6
90010802003 41.188494   -73.152008  121.6
90010804001 41.182524   -73.140233  153.5
90010804002 41.177371   -73.137682  151.9
90012002001 41.381013   -73.410319  87.5
90012305021 41.375831   -73.251305  105.6
90012305023 41.379858   -73.219021  96.8
90010712003 41.177009   -73.202378  168.4
90010712004 41.173824   -73.203364  197.4
90010713001 41.18072    -73.201927  184
90010713002 41.178332   -73.198693  183.5
90010714001 41.188573   -73.196834  115.9
90010714002 41.185972   -73.201774  118.1
90010805002 41.152953   -73.123918  71.8
90010806001 41.185641   -73.129554  112.4
90012003021 41.36255    -73.396786  86.7
90012003022 41.351419   -73.408962  154
90012402002 41.317929   -73.400807  91.5
90012402003 41.300946   -73.348506  126.8
90010202001 41.134991   -73.600739  118.3
90010202002 41.114341   -73.58158   84.7
90010203001 41.154604   -73.545957  90.1
90010203003 41.15133    -73.581789  109.2
90010353001 41.126492   -73.477104  191.2
90010353002 41.129396   -73.513016  221
90010354001 41.192382   -73.482245  120.4
90010354002 41.160459   -73.474248  114.7
90010354003 41.144611   -73.464233  216.9
90010354004 41.186241   -73.495502  88.6
90010503004 41.149218   -73.336642  192.9
90010503005 41.169512   -73.351917  140.6
90010504002 41.116467   -73.375013  85.9
90010505002 41.116352   -73.352404  85.4
90010203004 41.136534   -73.573863  86.2
90010205002 41.066638   -73.562444  77.2
90010425001 41.160707   -73.404989  125.9
90010425003 41.144366   -73.403332  121.1
90010426003 41.133452   -73.385111  81.7
90010505003 41.111412   -73.358066  80.8
90010505004 41.129533   -73.36223   82.9
90010551001 41.233676   -73.362879  108.9
90010206001 41.103581   -73.554734  85.2
90010206003 41.085439   -73.552623  82.5
90010426004 41.12787    -73.392559  136.8
90010427001 41.149039   -73.424079  107
90010428002 41.131288   -73.416989  91
90010551003 41.21145    -73.381718  77.7
90010551004 41.247205   -73.406188  77.1
90010552001 41.213714   -73.338138  108.3
90010552003 41.201885   -73.365519  115.7
90010208003 41.087838   -73.544622  77.2
90010209001 41.098298   -73.515074  83.6
90010428004 41.127102   -73.399138  85.3
90010429001 41.149545   -73.437497  77
90010430002 41.12977    -73.433261  106.9
90010602003 41.193534   -73.252047  60.8
90010602004 41.187197   -73.257167  141.4
90010210001 41.086533   -73.521131  112.1
90010211001 41.072121   -73.517654  101.2
90010211003 41.075939   -73.52826   78.2
90010431001 41.102395   -73.446269  83.8
90010431002 41.1173 -73.459513  73.3
90010432002 41.110378   -73.442314  92.3
90010212002 41.070902   -73.543556  89.6
90010213001 41.070755   -73.553697  110.1
90010213003 41.057543   -73.550212  98.6
90010433002 41.120549   -73.433645  95.1
90010434001 41.124754   -73.414431  91.3
90010434002 41.122855   -73.419197  87.9
90010434003 41.129448   -73.422258  98.3
90010435001 41.125176   -73.386176  144.2
90010214001 41.053676   -73.554293  202.3
90010214002 41.050584   -73.555773  176.2
90010214003 41.04669    -73.557427  103
90010214004 41.053666   -73.562879  172.1
90010215001 41.053793   -73.54926   145.9
90010215002 41.050154   -73.548156  139.8
90010435002 41.120456   -73.394265  87.9
90010435003 41.117986   -73.388516  78.1
90010436002 41.111907   -73.404062  183.2
90010437001 41.117371   -73.414574  202.5
90010215003 41.046584   -73.550538  148.7
90010215004 41.050229   -73.551746  126
90010216001 41.063583   -73.538563  185.4
90010216002 41.060054   -73.543822  132.2
90010216004 41.062798   -73.535453  124.6
90010437002 41.11312    -73.413212  213.7
90010438001 41.114109   -73.420907  167.6
90010438002 41.114952   -73.424774  122.8
90010438003 41.109739   -73.423166  149.8
90010438004 41.10928    -73.42707   137.6
90010101023 41.117859   -73.646129  87.8
90010102013 41.061299   -73.62279   157
90010217001 41.056839   -73.527159  171.4
90010217003 41.055427   -73.533343  129.1
90010217004 41.057926   -73.534384  138.6
90010217005 41.057235   -73.529757  104.5
90010218011 41.067416   -73.5255    144.2
90010439001 41.097703   -73.435218  153.8
90010439004 41.08607    -73.443137  68.4
90010440001 41.10246    -73.422491  199.8
90010102022 41.05194    -73.591855  97.6
90010103002 41.03803    -73.628652  87.4
90010218012 41.063118   -73.529794  118.4
90010218013 41.062331   -73.523699  120.1
90010218023 41.059329   -73.520307  107.8
90010219001 41.057436   -73.508325  96.8
90010440002 41.102279   -73.426726  201.9
90010440004 41.096429   -73.424339  166.7
90010440005 41.091685   -73.428074  265.9
90010441001 41.09657    -73.419621  174.2
90010441002 41.095089   -73.417375  165.8
90010103005 41.029176   -73.648761  130.3
90010220002 41.053379   -73.518227  148.5
90010221001 41.051607   -73.522784  157.5
90010442002 41.104538   -73.408893  154.1
90010442003 41.100721   -73.407695  121.1
90010105004 41.018874   -73.641155  144.3
90010221002 41.046457   -73.522742  133.3
90010221003 41.039903   -73.52882   126.5
90010223001 41.038742   -73.54947   135.6
90010223002 41.0331 -73.548214  78.3"


ny2 <- read.table(textConnection(mytext), sep = " ",
                  check.names = FALSE,
                  strip.white = TRUE,
                  header = TRUE)

names(ny2) <- c('id','lat','long','prediction')
us.states <- map_data("state")
plot.states <- c('connecticut') # subset to Connecticut for ease of use in this example

p <- ggplot() +
    geom_polygon(data = us.states[us.states$region %in% plot.states, ],
                 aes(x = long, y = lat, group = group), 
                 colour = "white", fill = "lightblue") +
    geom_point(data = ny2, aes(x = long, y = lat, 
                 colour = prediction), group = NULL) +
    stat_density2d(data = ny2, aes(x = long, y = lat), size = 0.02) +
    coord_map() +
    theme()

print(p)