我在C
编码,使用GCC
4.8.1作为我的编译器。目标是使用节点的键计算从Trees根节点开始的每个路径的乘积之和(无值 - 将其视为“item”)。 Tree的高度和初始根密钥由用户(输入)确定,其中h
是树的高度,x
是根节点的密钥。
要动态创建树,规则如下:
x
。x
,则子节点为x - 1
(左子节点),1
(右子节点)。x - 1
,则子节点为x - 1
(左子节点)和1
(右子节点)。1
,则子节点将为x
(左子节点)和0
(右子节点)。 示例输入(以及用于直观表示规则的图表):适用于h = 3
和x = 4
。
4
/ \
3 1
/ \ / \
3 1 4 0
路径为4 -> 3 -> 3
,4 -> 3 -> 1
,4 -> 1 -> 4
和4 -> 1 -> 0
。
此外,如果给定路径中的任何节点具有0
的密钥,则它不会在计算中使用(因此0
乘以任何数字0
)。预期的总和是:
4x3x3 + 4x3x1 + 4x1x4 = 36 + 12 + 16 = 64
(注意,忽略4x1x0
)
...我的问题是:我不确定如何实现动态树。 这是我的代码:
int n; //making n(value of root) global
struct node {
int data;
struct node *left,*right;
}
struct node *createnode(int x)
{
struct node *n = malloc(sizeof(struct node));
*n=x;
if(x==n||x==n-1)
{
n->left=createnode(x-1);
n->right=createnode(1);
}
else if(x==1)
{
n->left=createnode(x);
n->right=createnode(0);
}
return n;
}
void tree(int x,int y)
{
struct node *root;
root=creatnode(x);
}
答案 0 :(得分:0)
要启动您,请不要担心堆或堆栈或任何其他内存分配详细信息。相反,了解如何调用malloc()
和free()
:
// you will need to code struct node ...
struct node *root = malloc(sizeof(struct node));
// populate root node
// recursively call to create children nodes, etc.
// invoke a routine to free root and other nodes::
freenodes(root);
你还有很多工作要做。但要实现动态树,只需使用malloc()
。
答案 1 :(得分:0)
根据您的评论,这是您的代码:
struct node {int data; struct node *left,*right; }
void tree(int x,int y) {
int i=1;
while(i<x) {
struct node *root = malloc(sizeof(struct node));
i++;
}
}
首先,您只想创建一个根节点,并以递归方式执行此操作,您希望根节点创建一个左子节点和一个右子节点。所以,现在编写一个名为CreateNode(int value)
的例程:显式分配一个节点,调用自身创建左右子节点返回指向它明确分配的唯一节点的指针,而不是while
循环,只需将其命名为:
int have_built_root_node; // for this problem I would like using this var
// but it could also be passed as a parameter!
int max_height = 3;
void tree(int root_value) {
struct node *root;
have_built_root_node = 0;
root = CreateNode(1, root_value);
}
}
因此,CreateNode将成为您的递归例程,其逻辑非常重要!所以,编码时要小心!
struct node *createnode(int height, int value)
{ struct node *n = malloc(sizeof(struct node));
// if root node has NOT been built, then build it!
// set a switch so that its children are NOT created as root nodes.
//
// store this nodes value in n, as *n.value =
// test this value as if (*n.value ==
// compute value for left and right nodes
// compute height for children nodes, what should happen when
// the max_height is reached?
// write code with lots of white space and aligned, it should look pretty!!
if (x == n|| x == n-1) // is this syntactically correct?
{
n->left = createnode(x-1);
n->right = createnode(1);
}
else if (x == 1)
{
n->left = createnode(x);
n->right = createnode(0);
}
return n;
}
答案 2 :(得分:0)
您当前的代码未考虑树的h
参数,因此它不会停止创建过程。你必须考虑到这一点。您为创建树而提供的规则也不是很完整。您还没有定义数据值为零的节点会发生什么。
在开发像树木这样的结构时,值得拥有释放可用结构的代码,以及打印结构的功能。我所包含的是一个特殊情况版本,仅写入标准输出(而不是采用FILE *
参数),并且没有标记来标识正在打印的结构。通常,我的树转储函数将具有签名void dump_tree(FILE *fp, const char *tag, struct node *tree);
,但是很容易获取下面显示的代码并对其进行概括。
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
/*
** h is the height of the tree and x is the key of the root node.
**
** To dynamically create the tree, the rules are as follows:
**
** - The root node is x.
** - If the parent node is x, then the children will be x - 1 (left), 1 (right).
** - If the parent node is x - 1, then the children will be x - 1 (left) and 1 (right).
** - If the parent node is 1, then the children will be x (left) and 0 (right).
** - If the parent node is 0, then the child pointers will be null.
** - When the nodes are at level h in the tree, the child pointers will be null.
*/
struct node
{
int data;
struct node *left;
struct node *right;
};
/* Create a tree with value v at with d levels below it with the parameter x */
static struct node *create_node(int x, int d, int v)
{
struct node *n = malloc(sizeof(*n));
if (n == 0)
{
fprintf(stderr, "Out of memory\n");
exit(1);
}
n->data = v;
if (d == 0 || v == 0)
{
n->left = 0;
n->right = 0;
}
else if (v == x || v == x - 1)
{
n->left = create_node(x, d-1, x-1);
n->right = create_node(x, d-1, 1);
}
else if (v == 1)
{
n->left = create_node(x, d-1, x);
n->right = create_node(x, d-1, 0);
}
else
assert(0);
return n;
}
static void print_node(struct node *tree)
{
putchar('(');
if (tree->left)
print_node(tree->left);
printf("[%d]", tree->data);
if (tree->right)
print_node(tree->right);
putchar(')');
}
static void print_tree(struct node *tree)
{
print_node(tree);
putchar('\n');
}
static int path_products(struct node *tree)
{
if (tree->left == 0 && tree->right == 0)
{
//printf("Leaf node: %d\n", tree->data);
return tree->data;
}
else
{
int lhs = path_products(tree->left);
int rhs = path_products(tree->right);
int rv = tree->data * (lhs + rhs);
//printf("Interior node: lhs = %d, rhs = %d, data = %d, return %d\n", lhs, rhs, tree->data, rv);
return rv;
}
}
static void release_tree(struct node *tree)
{
if (tree == 0)
return;
release_tree(tree->left);
release_tree(tree->right);
free(tree);
}
int main(int argc, char **argv)
{
if (argc != 3)
{
fprintf(stderr, "Usage: %s height root\n", argv[0]);
exit(1);
}
int h = atoi(argv[1]);
if (h <= 0)
{
fprintf(stderr, "Invalid height %s (should be greater than zero)\n", argv[1]);
exit(1);
}
int x = atoi(argv[2]);
if (x <= 2)
{
fprintf(stderr, "Invalid root value %s (should be greater than two)\n", argv[2]);
exit(1);
}
struct node *tree = create_node(x, h-1, x);
print_tree(tree);
printf("Sum of products of paths = %d\n", path_products(tree));
release_tree(tree);
return 0;
}
$ tree 1 4
([4])
H = 1, X = 4: Sum of products of paths = 4
$ tree 2 4
(([3])[4]([1]))
H = 2, X = 4: Sum of products of paths = 16
$ tree 3 4
((([3])[3]([1]))[4](([4])[1]([0])))
H = 3, X = 4: Sum of products of paths = 64
$ tree 4 4
(((([3])[3]([1]))[3](([4])[1]([0])))[4]((([3])[4]([1]))[1]([0])))
H = 4, X = 4: Sum of products of paths = 256
$ tree 5 4
((((([3])[3]([1]))[3](([4])[1]([0])))[3]((([3])[4]([1]))[1]([0])))[4](((([3])[3]([1]))[4](([4])[1]([0])))[1]([0])))
H = 5, X = 4: Sum of products of paths = 1024
$ tree 6 4
(((((([3])[3]([1]))[3](([4])[1]([0])))[3]((([3])[4]([1]))[1]([0])))[3](((([3])[3]([1]))[4](([4])[1]([0])))[1]([0])))[4]((((([3])[3]([1]))[3](([4])[1]([0])))[4]((([3])[4]([1]))[1]([0])))[1]([0])))
H = 6, X = 4: Sum of products of paths = 4096
$
树转储格式是明确的,但对那些未使用它的人来说是不可理解的。编写一个通用树转储,将其打印出多行是一个相当困难的命题。
$ for j in {3..7}; do for i in {1..5}; do ./tree $i $j; done; done | grep -v '^(' | so
H = 1, X = 3: Sum of products of paths = 3
H = 2, X = 3: Sum of products of paths = 9
H = 3, X = 3: Sum of products of paths = 27
H = 4, X = 3: Sum of products of paths = 81
H = 5, X = 3: Sum of products of paths = 243
H = 1, X = 4: Sum of products of paths = 4
H = 2, X = 4: Sum of products of paths = 16
H = 3, X = 4: Sum of products of paths = 64
H = 4, X = 4: Sum of products of paths = 256
H = 5, X = 4: Sum of products of paths = 1024
H = 1, X = 5: Sum of products of paths = 5
H = 2, X = 5: Sum of products of paths = 25
H = 3, X = 5: Sum of products of paths = 125
H = 4, X = 5: Sum of products of paths = 625
H = 5, X = 5: Sum of products of paths = 3125
H = 1, X = 6: Sum of products of paths = 6
H = 2, X = 6: Sum of products of paths = 36
H = 3, X = 6: Sum of products of paths = 216
H = 4, X = 6: Sum of products of paths = 1296
H = 5, X = 6: Sum of products of paths = 7776
H = 1, X = 7: Sum of products of paths = 7
H = 2, X = 7: Sum of products of paths = 49
H = 3, X = 7: Sum of products of paths = 343
H = 4, X = 7: Sum of products of paths = 2401
H = 5, X = 7: Sum of products of paths = 16807
$