动态创建的树中的根到节点计算

时间:2013-08-16 18:16:28

标签: c dynamic tree

我在C编码,使用GCC 4.8.1作为我的编译器。目标是使用节点的键计算从Trees根节点开始的每个路径的乘积之和(无值 - 将其视为“item”)。 Tree的高度和初始根密钥由用户(输入)确定,其中h是树的高度,x是根节点的密钥。

要动态创建树,规则如下:

  • Trees根节点为x
  • 如果父节点为x,则子节点为x - 1(左子节点),1(右子节点)。
  • 如果父节点为x - 1,则子节点为x - 1(左子节点)和1(右子节点)。
  • 如果父节点为1,则子节点将为x(左子节点)和0(右子节点)。

示例输入(以及用于直观表示规则的图表):适用于h = 3x = 4

                                           4
                                         /   \
                                       3      1
                                     /  \    / \
                                    3    1  4   0

路径为4 -> 3 -> 34 -> 3 -> 14 -> 1 -> 44 -> 1 -> 0

此外,如果给定路径中的任何节点具有0的密钥,则它不会在计算中使用(因此0乘以任何数字0)。预期的总和是:

4x3x3 + 4x3x1 + 4x1x4 = 36 + 12 + 16 = 64(注意,忽略4x1x0

...我的问题是:我不确定如何实现动态树。 这是我的代码:

int n;        //making n(value of root)  global
struct node {
  int data;
  struct node *left,*right;
}
struct node *createnode(int x)
{
  struct node *n = malloc(sizeof(struct node));
  *n=x;
  if(x==n||x==n-1)
  {
      n->left=createnode(x-1);
      n->right=createnode(1);
  }
  else if(x==1)
  {
      n->left=createnode(x);
      n->right=createnode(0);
  }
  return n;
}
void tree(int x,int y)
{
    struct node *root;
    root=creatnode(x);
}

3 个答案:

答案 0 :(得分:0)

要启动您,请不要担心堆或堆栈或任何其他内存分配详细信息。相反,了解如何调用malloc()free()

   // you will need to code struct node ...
   struct node *root = malloc(sizeof(struct node));

   // populate root node

   // recursively call to create children nodes, etc.

   // invoke a routine to free root and other nodes::
   freenodes(root);

你还有很多工作要做。但要实现动态树,只需使用malloc()

答案 1 :(得分:0)

根据您的评论,这是您的代码:

struct node {int data; struct node *left,*right; } 

void tree(int x,int y) {
    int i=1;
    while(i<x) {
       struct node *root = malloc(sizeof(struct node));
       i++;
    }
 }

首先,您只想创建一个根节点,并以递归方式执行此操作,您希望根节点创建一个左子节点和一个右子节点。所以,现在编写一个名为CreateNode(int value)的例程:显式分配一个节点,调用自身创建左右子节点返回指向它明确分配的唯一节点的指针,而不是while循环,只需将其命名为:

 int  have_built_root_node;  // for this problem I would like using this var
                             // but it could also be passed as a parameter!

 int  max_height = 3;

 void tree(int root_value) {
    struct node *root;

    have_built_root_node = 0;
    root = CreateNode(1, root_value);

    }
 }

因此,CreateNode将成为您的递归例程,其逻辑非常重要!所以,编码时要小心!

struct node *createnode(int height, int value)
{  struct node *n = malloc(sizeof(struct node));

  // if root node has NOT been built, then build it!
  // set a switch so that its children are NOT created as root nodes.
  // 
  // store this nodes value in n, as *n.value = 
  // test this value as if (*n.value == 
  // compute value for left and right nodes
  // compute height for children nodes, what should happen when
  // the max_height is reached?

  // write code with lots of white space and aligned, it should look pretty!!
  if (x == n|| x == n-1)   // is this syntactically correct?
  {
      n->left  = createnode(x-1);
      n->right = createnode(1);
  }
  else if (x == 1)
  {
    n->left  = createnode(x);
    n->right = createnode(0);
  }
return n;
}

答案 2 :(得分:0)

您当前的代码未考虑树的h参数,因此它不会停止创建过程。你必须考虑到这一点。您为创建树而提供的规则也不是很完整。您还没有定义数据值为零的节点会发生什么。

在开发像树木这样的结构时,值得拥有释放可用结构的代码,以及打印结构的功能。我所包含的是一个特殊情况版本,仅写入标准输出(而不是采用FILE *参数),并且没有标记来标识正在打印的结构。通常,我的树转储函数将具有签名void dump_tree(FILE *fp, const char *tag, struct node *tree);,但是很容易获取下面显示的代码并对其进行概括。

代码

#include <assert.h>
#include <stdlib.h>
#include <stdio.h>

/*
** h is the height of the tree and x is the key of the root node.
**
** To dynamically create the tree, the rules are as follows:
**
** - The root node is x.
** - If the parent node is x, then the children will be x - 1 (left), 1 (right).
** - If the parent node is x - 1, then the children will be x - 1 (left) and 1 (right).
** - If the parent node is 1, then the children will be x (left) and 0 (right).
** - If the parent node is 0, then the child pointers will be null.
** - When the nodes are at level h in the tree, the child pointers will be null.
*/

struct node
{
    int          data;
    struct node *left;
    struct node *right;
};

/* Create a tree with value v at with d levels below it with the parameter x */
static struct node *create_node(int x, int d, int v)
{
    struct node *n = malloc(sizeof(*n));
    if (n == 0)
    {
        fprintf(stderr, "Out of memory\n");
        exit(1);
    }
    n->data = v;
    if (d == 0 || v == 0)
    {
        n->left = 0;
        n->right = 0;
    }
    else if (v == x || v == x - 1)
    {
        n->left = create_node(x, d-1, x-1);
        n->right = create_node(x, d-1, 1);
    }
    else if (v == 1)
    {
        n->left = create_node(x, d-1, x);
        n->right = create_node(x, d-1, 0);
    }
    else
        assert(0);
    return n;
}

static void print_node(struct node *tree)
{
    putchar('(');
    if (tree->left)
        print_node(tree->left);
    printf("[%d]", tree->data);
    if (tree->right)
        print_node(tree->right);
    putchar(')');
}

static void print_tree(struct node *tree)
{
    print_node(tree);
    putchar('\n');
}

static int path_products(struct node *tree)
{
    if (tree->left == 0 && tree->right == 0)
    {
        //printf("Leaf node: %d\n", tree->data);
        return tree->data;
    }
    else
    {
        int lhs = path_products(tree->left);
        int rhs = path_products(tree->right);
        int rv  = tree->data * (lhs + rhs);
        //printf("Interior node: lhs = %d, rhs = %d, data = %d, return %d\n", lhs, rhs, tree->data, rv);
        return rv;
    }
}

static void release_tree(struct node *tree)
{
    if (tree == 0)
        return;
    release_tree(tree->left);
    release_tree(tree->right);
    free(tree);
}

int main(int argc, char **argv)
{
    if (argc != 3)
    {
        fprintf(stderr, "Usage: %s height root\n", argv[0]);
        exit(1);
    }
    int h = atoi(argv[1]);
    if (h <= 0)
    {
        fprintf(stderr, "Invalid height %s (should be greater than zero)\n", argv[1]);
        exit(1);
    }
    int x = atoi(argv[2]);
    if (x <= 2)
    {
        fprintf(stderr, "Invalid root value %s (should be greater than two)\n", argv[2]);
        exit(1);
    }
    struct node *tree = create_node(x, h-1, x);

    print_tree(tree);
    printf("Sum of products of paths = %d\n", path_products(tree));
    release_tree(tree);
    return 0;
}

样本输出

$ tree 1 4
([4])
H = 1, X = 4: Sum of products of paths = 4
$ tree 2 4
(([3])[4]([1]))
H = 2, X = 4: Sum of products of paths = 16
$ tree 3 4
((([3])[3]([1]))[4](([4])[1]([0])))
H = 3, X = 4: Sum of products of paths = 64
$ tree 4 4 
(((([3])[3]([1]))[3](([4])[1]([0])))[4]((([3])[4]([1]))[1]([0])))
H = 4, X = 4: Sum of products of paths = 256
$ tree 5 4
((((([3])[3]([1]))[3](([4])[1]([0])))[3]((([3])[4]([1]))[1]([0])))[4](((([3])[3]([1]))[4](([4])[1]([0])))[1]([0])))
H = 5, X = 4: Sum of products of paths = 1024
$ tree 6 4
(((((([3])[3]([1]))[3](([4])[1]([0])))[3]((([3])[4]([1]))[1]([0])))[3](((([3])[3]([1]))[4](([4])[1]([0])))[1]([0])))[4]((((([3])[3]([1]))[3](([4])[1]([0])))[4]((([3])[4]([1]))[1]([0])))[1]([0])))
H = 6, X = 4: Sum of products of paths = 4096
$

树转储格式是明确的,但对那些未使用它的人来说是不可理解的。编写一个通用树转储,将其打印出多行是一个相当困难的命题。

$ for j in {3..7}; do for i in {1..5}; do ./tree $i $j; done; done | grep -v '^(' | so
H = 1, X = 3: Sum of products of paths = 3
H = 2, X = 3: Sum of products of paths = 9
H = 3, X = 3: Sum of products of paths = 27
H = 4, X = 3: Sum of products of paths = 81
H = 5, X = 3: Sum of products of paths = 243
H = 1, X = 4: Sum of products of paths = 4
H = 2, X = 4: Sum of products of paths = 16
H = 3, X = 4: Sum of products of paths = 64
H = 4, X = 4: Sum of products of paths = 256
H = 5, X = 4: Sum of products of paths = 1024
H = 1, X = 5: Sum of products of paths = 5
H = 2, X = 5: Sum of products of paths = 25
H = 3, X = 5: Sum of products of paths = 125
H = 4, X = 5: Sum of products of paths = 625
H = 5, X = 5: Sum of products of paths = 3125
H = 1, X = 6: Sum of products of paths = 6
H = 2, X = 6: Sum of products of paths = 36
H = 3, X = 6: Sum of products of paths = 216
H = 4, X = 6: Sum of products of paths = 1296
H = 5, X = 6: Sum of products of paths = 7776
H = 1, X = 7: Sum of products of paths = 7
H = 2, X = 7: Sum of products of paths = 49
H = 3, X = 7: Sum of products of paths = 343
H = 4, X = 7: Sum of products of paths = 2401
H = 5, X = 7: Sum of products of paths = 16807
$