在pandas中,有几种方法可以处理给定窗口中的数据(例如pd.rolling_mean
或pd.rolling_std
。)但是,我想设置一个窗口重叠,我认为这是一个很好的标准要求。例如,在下图中,您可以看到一个跨越256个样本并重叠128个样本的窗口。
如何使用Pandas或Numpy中包含的优化方法?
答案 0 :(得分:6)
使用as_strided
你可以这样做:
import numpy as np
from numpy.lib.stride_tricks import as_strided
def windowed_view(arr, window, overlap):
arr = np.asarray(arr)
window_step = window - overlap
new_shape = arr.shape[:-1] + ((arr.shape[-1] - overlap) // window_step,
window)
new_strides = (arr.strides[:-1] + (window_step * arr.strides[-1],) +
arr.strides[-1:])
return as_strided(arr, shape=new_shape, strides=new_strides)
如果您将1D数组传递给上述函数,它会将2D视图返回到该数组,形状为(number_of_windows, window_size)
,因此您可以计算,例如窗口意思是:
win_avg = np.mean(windowed_view(arr, win_size, win_overlap), axis=-1)
例如:
>>> a = np.arange(16)
>>> windowed_view(a, 4, 2)
array([[ 0, 1, 2, 3],
[ 2, 3, 4, 5],
[ 4, 5, 6, 7],
[ 6, 7, 8, 9],
[ 8, 9, 10, 11],
[10, 11, 12, 13],
[12, 13, 14, 15]])
>>> windowed_view(a, 4, 1)
array([[ 0, 1, 2, 3],
[ 3, 4, 5, 6],
[ 6, 7, 8, 9],
[ 9, 10, 11, 12],
[12, 13, 14, 15]])
答案 1 :(得分:1)
我不熟悉大熊猫,但是在numpy中你会做到这样的事情(未经测试):
def overlapped_windows(x, nwin, noverlap = None):
if noverlap is None:
noverlap = nwin // 2
step = nwin - noverlap
for i in range(0, len(x) - nwin + 1, step):
window = x[i:i+nwin] #this is a view, not a copy
y = window * hann(nwin)
#your code here with y
这是从一些旧代码中删除以计算平均PSD,您通常使用半重叠窗口处理。请注意window
是数组x的'视图',这意味着它不会复制数据(非常快,所以可能很好),如果你修改window
,你也会修改{{1} (所以不要x
)。