我写了一些代码,使用reddit praw api在reddit上找到提交标题中最受欢迎的单词。
import nltk
import praw
picksub = raw_input('\nWhich subreddit do you want to analyze? r/')
many = input('\nHow many of the top words would you like to see? \n\t> ')
print 'Getting the top %d most common words from r/%s:' % (many,picksub)
r = praw.Reddit(user_agent='get the most common words from chosen subreddit')
submissions = r.get_subreddit(picksub).get_top_from_all(limit=200)
hey = []
for x in submissions:
hey.extend(str(x).split(' '))
fdist = nltk.FreqDist(hey) # creates a frequency distribution for words in 'hey'
top_words = fdist.keys()
common_words = ['its','am', 'ago','took', 'got', 'will', 'been', 'get', 'such','your','don\'t', 'if', 'why', 'do', 'does', 'or', 'any', 'but', 'they', 'all', 'now','than','into','can', 'i\'m','not','so','just', 'out','about','have','when', 'would' ,'where', 'what', 'who' 'I\'m','says' 'not', '', 'over', '_', '-','after', 'an','for', 'who', 'by', 'from', 'it', 'how', 'you', 'about' 'for', 'on', 'as', 'be', 'has', 'that', 'was', 'there', 'with','what', 'we', '::', 'to', 'the', 'of', ':', '...', 'a', 'at', 'is', 'my', 'in' , 'i', 'this', 'and', 'are', 'he', 'she', 'is', 'his', 'hers']
already = []
counter = 0
number = 1
print '-----------------------'
for word in top_words:
if word.lower() not in common_words and word.lower() not in already:
print str(number) + ". '" + word + "'"
counter +=1
number +=1
already.append(word.lower())
if counter == many:
break
print '-----------------------\n'
所以输入subreddit' python'获得10个帖子的回复:
如何使此脚本不返回数字,以及错误字样如' d ...'?前4个结果是可以接受的,但我想用有意义的单词替换这个结果。制作列表common_words是不合理的,并且不会过滤这些错误。我编写代码比较新,我很感激帮助。
答案 0 :(得分:0)
我不同意。制作常用单词列表是正确的,没有更简单的方法可以过滤掉for,I,am等。但是,使用common_words列表过滤掉不是单词的结果是不合理的,因为那样做你必须包括你不想要的每一个非字。非文字应该被过滤掉。
一些建议:
1)common_words应该是set()
,因为你的列表很长,这应该加快速度。 O(1)中的集合的in
操作,而列表中的集合是O(n)。
2)摆脱所有数字字符串是微不足道的。你可以做到的一种方法是:
all([w.isdigit() for w in word])
如果返回True,那么该单词只是一系列数字。
3)摆脱d ...有点棘手。这取决于你如何定义一个非单词。这样:
tf = [ c.isalpha() for c in word ]
返回True / False值的列表(如果char不是字母,则为False)。然后,您可以计算以下值:
t = tf.count(True)
f = tf.count(False)
然后,您可以将非单词定义为其中包含更多非字母字符而非字母的单词,作为具有任何非字母字符的单词,等等。例如:
def check_wordiness(word):
# This returns true only if a word is all letters
return all([ c.isalpha() for c in word ])
4)在for word in top_words:
区块中,您确定没有混淆计数器和号码吗?此外,计数器和数字几乎是多余的,您可以将最后一位重写为:
for word in top_words:
# Since you are calling .lower() so much,
# you probably want to define it up here
w = word.lower()
if w not in common_words and w not in already:
# String formatting is preferred over +'s
print "%i. '%s'" % (number, word)
number +=1
# This could go under the if statement. You only want to add
# words that could be added again. Why add words that are being
# filtered out anyways?
already.append(w)
# this wasn't indented correctly before
if number == many:
break
希望有所帮助。