我想避免除以零,所以我有if
语句:
float number;
//........
if (number > 0.000000000000001)
number = 1/number;
我可以安全地使用多少小值代替0.000000000000001
?
答案 0 :(得分:9)
只需使用:
if(number > 0)
number = 1/number;
请注意>
和>=
之间的区别。如果number > 0
,则绝对不是0
。
如果数字可以为负数,您也可以使用:
if(number != 0)
number = 1/number;
请注意,正如其他人在评论中提到的那样,检查number
不是0
不会阻止您的结果成为Inf
或-Inf
。
答案 1 :(得分:6)
if
条件中的数字取决于您想要对结果执行的操作。在(几乎?)所有C实现中使用的IEEE 754中,除以0就可以了:你得到正无穷大。
如果你的目标是避免+/-无穷大,那么if
条件中的数字将取决于分子。当分子为1时,您可以使用DBL_MIN
中的FLT_MIN
或math.h
。
如果你的目标是在分割后避免大量数字,你可以进行除法,然后检查除法后fabs(number)
是否大于某个值,然后根据需要采取任何行动。
您的问题没有一个正确答案。
答案 2 :(得分:3)
您只需查看:
if (number > 0)
我无法理解为什么你需要下限。
答案 3 :(得分:3)
对于数字类型T std :: numeric_limits为您提供所需的任何内容。例如,您可以这样做以确保min_invertible之上的任何内容都具有有限的倒数:
float max_float = std::numeric_limits<float>::max();
float min_float = std::numeric_limits<float>::min(); // or denorm_min()
float min_invertible = (max_float*min_float > 1.0f )? min_float : 1.0f/max_float;
答案 4 :(得分:3)
你不能正面检查。 DBL_MAX / 0.5
实际上是零除;结果是你从任何其他分区获得的相同无穷大(几乎)为零。
有一个简单的解决方案:只需检查结果。 std::isinf(result)
将告诉您结果是否溢出,IEEE754告诉您在其他情况下除法不能产生无穷大。 (好吧,除了INF / x,这不是真正产生无穷大而只是保留它。)
答案 5 :(得分:1)
通过上溢或下溢产生无益结果的风险取决于分子和分母。
考虑到这一点的安全检查是:
if (den == 0.0 || log2(num) - log2(den) >= log2(FLT_MAX))
/* expect overflow */ ;
else
return num / den;
但是您可能希望从log2(FLT_MAX)
中减少一小部分,以便为随后的算术和四舍五入留下摆动空间。
您可以使用frexp
执行类似的操作,这也适用于负值:
int max;
int n, d;
frexp(FLT_MAX, &max);
frexp(num, &n);
frexp(den, &d);
if (den == 0.0 || n - d > max)
/* might overflow */ ;
else
return num / den;
这避免了计算对数的工作,如果编译器能找到合适的方法,这可能会更有效,但它并不那么准确。
答案 6 :(得分:0)
对于IEEE 32位浮点数,大于0的最小可能值为2 ^ -149。
如果您使用的是IEEE 64位,则可能的最小值为2 ^ -1074。
那就是说,(x> 0)可能是更好的测试。