我有一个类似以下示例的数据框
a = c(1, 1, 1, 2, 2, 3, 4, 4)
b = c(3.5, 3.5, 2.5, 2, 2, 1, 2.2, 7)
df <-data.frame(a,b)
我可以通过以下代码从R数据框中删除重复的行,但是如何找到每个重复行重复的次数?我需要结果作为向量。
unique(df)
或
df[!duplicated(df), ]
答案 0 :(得分:26)
以下是使用库ddply()
plyr
的解决方案
library(plyr)
ddply(df,.(a,b),nrow)
a b V1
1 1 2.5 1
2 1 3.5 2
3 2 2.0 2
4 3 1.0 1
5 4 2.2 1
6 4 7.0 1
答案 1 :(得分:21)
你总是可以用一块石头杀死两只鸟:
aggregate(list(numdup=rep(1,nrow(df))), df, length)
# or even:
aggregate(numdup ~., data=transform(df,numdup=1), length)
# or even:
aggregate(cbind(df[0],numdup=1), df, length)
a b numdup
1 3 1.0 1
2 2 2.0 2
3 4 2.2 1
4 1 2.5 1
5 1 3.5 2
6 4 7.0 1
答案 2 :(得分:12)
以下是两种方法。
# a example data set that is not sorted
DF <-data.frame(replicate(sequence(1:3),n=2))
# example using similar idea to duplicated.data.frame
count.duplicates <- function(DF){
x <- do.call('paste', c(DF, sep = '\r'))
ox <- order(x)
rl <- rle(x[ox])
cbind(DF[ox[cumsum(rl$lengths)],,drop=FALSE],count = rl$lengths)
}
count.duplicates(DF)
# X1 X2 count
# 4 1 1 3
# 5 2 2 2
# 6 3 3 1
# a far simpler `data.table` approach
library(data.table)
count.dups <- function(DF){
DT <- data.table(DF)
DT[,.N, by = names(DT)]
}
count.dups(DF)
# X1 X2 N
# 1: 1 1 3
# 2: 2 2 2
# 3: 3 3 1
答案 3 :(得分:9)
使用dplyr:
summarise(group_by(df,a,b),length(b))
或
group_size(group_by(df,a,b))
#[1] 1 2 2 1 1 1