在当地运行Mahout kMeans

时间:2013-08-13 04:24:30

标签: mahout

我通过设置MAHOUT_LOCAL="True"

来运行mahout kmeans

以下是我在shell脚本中的命令。

mahout kmeans --input ./seq_input/ --output ./output --numClusters 4 --maxIter 10 --convergenceDelta .0001 --clustering --distanceMeasure org.apache.mahout.common.distance.CosineDistanceMeasure --overwrite --clusters ./centroid_vectors

在运行脚本时,我遇到错误

Unknown program 'kmeans' chosen.

以下是日志信息:

MAHOUT_LOCAL is set, so we don't add HADOOP_CONF_DIR to classpath.
MAHOUT_LOCAL is set, running locally
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/lib/mahout/mahout-examples-0.7-cdh4.3.0-job.jar!/org/slf4j/impl/StaticLoggerBinder.class] 
SLF4J: Found binding in [jar:file:/usr/lib/mahout/lib/slf4j-jcl-1.6.1.jar!/org/slf4j/impl/StaticLoggerBinder.class] 
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
log4j:WARN No appenders could be found for logger (org.apache.mahout.driver.MahoutDriver).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Unknown program 'kmeans' chosen.
Valid program names are:
  arff.vector: : Generate Vectors from an ARFF file or directory
  baumwelch: : Baum-Welch algorithm for unsupervised HMM training
  cat: : Print a file or resource as the logistic regression models would see it
  hmmpredict: : Generate random sequence of observations by given HMM
  lucene.vector: : Generate Vectors from a Lucene index
  runAdaptiveLogistic: : Score new production data using a probably trained and validated    AdaptivelogisticRegression model
  runlogistic: : Run a logistic regression model against CSV data
  seqwiki: : Wikipedia xml dump to sequence file
  svd: : Lanczos Singular Value Decomposition
  trainAdaptiveLogistic: : Train an AdaptivelogisticRegression model
  trainlogistic: : Train a logistic regression using stochastic gradient descent
  validateAdaptiveLogistic: : Validate an AdaptivelogisticRegression model against hold-out data set
  viterbi: : Viterbi decoding of hidden states from given output states sequence


导致此错误的原因是什么?

0 个答案:

没有答案