针对Android优化Canny Edge Detector

时间:2013-08-11 17:31:13

标签: android optimization memory-management

我正在创建一个在图片上运行一些图像处理的Android应用程序,处理的第一阶段是运行Canny Edge Detector。虽然它适用于较小的图片,但只要图片中的像素阈值超过一定阈值,应用就会因为过多的内存使用而关闭。

我发现应用程序在computeGradients()方法中被杀死了,因为创建了太多(非常大)的数组,但我看不出有什么方法可以解决这个问题!在此实现中,每个数组都是完全必要的(适用于来自http://www.tomgibara.com/computer-vision/CannyEdgeDetector.java的Android)。我能否就如何防止这种情况发生任何想法?

CannyEdgeDetector代码:

package com.example.myfirstapp;

import android.app.Activity;
import android.graphics.Bitmap;
import android.util.Log;

import java.util.Arrays;

/**
 * Created with IntelliJ IDEA.
 * User: Wesley
 * Date: 7/29/13
 * Time: 5:26 PM
 */
public class CannyEdgeDetector extends Activity {
    private final static float GAUSSIAN_CUT_OFF = 0.005f;
    private final static float MAGNITUDE_SCALE = 10F;
    private final static float MAGNITUDE_LIMIT = 100F;
    private final static int MAGNITUDE_MAX = (int) (MAGNITUDE_SCALE * MAGNITUDE_LIMIT);

    private int height;
    private int width;
    private int picSize;
    private int[] data;
    private int[] magnitude;
    private Bitmap sourceImg;
    private Bitmap edgesImg;

    private float gaussianKernelRadius;
    private float lowThreshold;
    private float highThreshold;
    private int gaussianKernelWidth;
    private boolean contrastNormalised;

    private int mFollowStackDepth = 100;

    public CannyEdgeDetector () {
        lowThreshold = 2.5f;
        highThreshold = 7.5f;
        gaussianKernelRadius = 3f;
        gaussianKernelWidth = 18;
        contrastNormalised = false;
    }

    /**
     * Accessor method which simply returns the bitmap image that is
     * being used as the source.
     * @return the source image, or null
     */
    public Bitmap getSourceImg () {
        return sourceImg;
    }

    /**
     * Accessor method which simply returns the bitmap image with edge
     * detection.
     * @return the source image, or null
     */
    public Bitmap getEdgesImg () {
        return edgesImg;
    }

    /**
     * Mutator method to set the source image
     * @param sourceImg_ the image to set the source image variable to
     */
    public void setSourceImg (Bitmap sourceImg_) {
        sourceImg = sourceImg_.copy(Bitmap.Config.ARGB_8888, true);
    }

    /**
     * Mutator method to set the source image
     * @param edgesImg_ the image to set the source image variable to
     */
    public void setEdgesImg (Bitmap edgesImg_) {
        edgesImg = edgesImg_;
    }

    /**
     * Sets whether the contrast is normalized
     * @param contrastNormalised true if the contrast should be normalized,
     * false otherwise
     */

    public void setContrastNormalised(boolean contrastNormalised) {
        this.contrastNormalised = contrastNormalised;
    }

    /**
     * Whether the luminance data extracted from the source image is normalized
     * by linearizing its histogram prior to edge extraction. The default value
     * is false.
     *
     * @return whether the contrast is normalized
     */
    public boolean isContrastNormalized() {
        return contrastNormalised;
    }

    public void process () {
        long start = System.nanoTime();
        height = sourceImg.getHeight();
        width = sourceImg.getWidth();
        picSize = height*width;
        initArrs();
        readLuminance();
        if (contrastNormalised) {
            normalizeContrast();
        }
        computeGradients(gaussianKernelRadius, gaussianKernelWidth);
        int low = Math.round (lowThreshold * MAGNITUDE_SCALE);
        int high = Math.round (highThreshold * MAGNITUDE_SCALE);
        performHysteresis(low, high);
        thresholdEdges();
        writeEdges(data);
        Log.i("Processing", "Processing terminated, time required: " + (System.nanoTime() - start));
    }

    private void initArrs() {
        if (data == null || picSize != data.length) {
            data = new int[picSize];
            magnitude = new int[picSize];
        }
    }

    private void readLuminance() {
        int [] pixels = new int[picSize];
        sourceImg.getPixels(pixels, 0, width, 0, 0, width, height);
        for (int i = 0 ; i < picSize ; i++) {
            int p = pixels[i];
            int r = (p & 0xff0000) >> 16;
            int g = (p & 0xff00) >> 8;
            int b = p & 0xff;
            data[i] = luminance(r, g, b);
        }
    }

    private int luminance (int R, int G, int B) {
        return Math.round (0.299f * R + 0.587f * G + 0.114f * B);
    }

    private void normalizeContrast() {
        int[] histogram = new int[256];
        for (int i = 0 ; i < data.length ; i++) {
            histogram[data[i]]++;
        }

//        for (int i = 0 ; i < data.length ; i++) {
//            Log.i("BEFORE contrast data", "Pixel number " + i + " = " + data[i]);
//        }

        int[] remap = new int[256];
        int sum = 0;
        int j = 0;
        for (int i = 0; i < histogram.length; i++) {
            sum += histogram[i];
            int target = sum*255/picSize;
            for (int k = j+1; k <=target; k++) {
                remap[k] = i;
            }
            j = target;
        }

        for (int i = 0; i < data.length; i++) {
            data[i] = remap[data[i]];
        }

//        for (int i = 0 ; i < data.length ; i++) {
//            Log.i("AFTER contrast data", "Pixel number " + i + " = " + data[i]);
//        }
    }

    private void computeGradients(float kernelRadius, int kernelWidth) {
        float[] xConv = new float[picSize];
        float[] yConv = new float[picSize];

        //generate the gaussian convolution masks
        float kernel[] = new float[kernelWidth];
        float diffKernel[] = new float[kernelWidth];
        int kwidth;
        for (kwidth = 0 ; kwidth < kernelWidth ; kwidth++) {
            float g1 = gaussian(kwidth, kernelRadius);
            if (g1 <= GAUSSIAN_CUT_OFF && kwidth >= 2) break;
            float g2 = gaussian(kwidth - 0.5f, kernelRadius);
            float g3 = gaussian(kwidth + 0.5f, kernelRadius);
            kernel[kwidth] = (g1 + g2 + g3) / 3f / (2f * (float) Math.PI * kernelRadius * kernelRadius);
            diffKernel[kwidth] = g3 - g2;
        }

        //kwidth now == kernelWidth-1

        int initX = kwidth - 1; //So that it does not go too close to edges
        int maxX = width - (kwidth - 1);    //Same same
        int initY = width * (kwidth - 1);   //Same same
        int maxY = width * (height - (kwidth - 1)); //Same same

        //perform convolution (Gaussian blurring) in x and y directions
        for (int x = initX; x < maxX; x++) {
            for (int y = initY; y < maxY; y += width) {
                int index = x + y;
                float sumX = data[index] * kernel[0];
                float sumY = sumX;
                int xOffset = 1;    //Initial values
                int yOffset = width;
                for( ; xOffset < kwidth ; ) {
                    sumY += kernel[xOffset] * (data[index - yOffset] + data[index + yOffset]);
                    sumX += kernel[xOffset] * (data[index - xOffset] + data[index + xOffset]);
                    yOffset += width;
                    xOffset++;
                }

                yConv[index] = sumY;
                xConv[index] = sumX;
            }

        }

        float[] xGradient = new float[picSize];
        float[] yGradient = new float[picSize];

        for (int x = initX; x < maxX; x++) {
            for (int y = initY; y < maxY; y += width) {
                float sum = 0f;
                int index = x + y;
                for (int i = 1; i < kwidth; i++)
                    sum += diffKernel[i] * (yConv[index - i] - yConv[index + i]);

                xGradient[index] = sum;
            }

        }

        for (int x = kwidth; x < width - kwidth; x++) {
            for (int y = initY; y < maxY; y += width) {
                float sum = 0.0f;
                int index = x + y;
                int yOffset = width;
                for (int i = 1; i < kwidth; i++) {
                    sum += diffKernel[i] * (xConv[index - yOffset] - xConv[index + yOffset]);
                    yOffset += width;
                }

                yGradient[index] = sum;
            }

        }

        initX = kwidth;
        maxX = width - kwidth;
        initY = width * kwidth;
        maxY = width * (height - kwidth);
        for (int x = initX; x < maxX; x++) {
            for (int y = initY; y < maxY; y += width) {
                int index = x + y;
                int indexN = index - width;
                int indexS = index + width;
                int indexW = index - 1;
                int indexE = index + 1;
                int indexNW = indexN - 1;
                int indexNE = indexN + 1;
                int indexSW = indexS - 1;
                int indexSE = indexS + 1;


                float xGrad = xGradient[index];
                float yGrad = yGradient[index];
                float gradMag = hypot(xGrad, yGrad);

                //perform non-maximal supression
                float nMag = hypot(xGradient[indexN], yGradient[indexN]);
                float sMag = hypot(xGradient[indexS], yGradient[indexS]);
                float wMag = hypot(xGradient[indexW], yGradient[indexW]);
                float eMag = hypot(xGradient[indexE], yGradient[indexE]);
                float neMag = hypot(xGradient[indexNE], yGradient[indexNE]);
                float seMag = hypot(xGradient[indexSE], yGradient[indexSE]);
                float swMag = hypot(xGradient[indexSW], yGradient[indexSW]);
                float nwMag = hypot(xGradient[indexNW], yGradient[indexNW]);
                float tmp;
                /*
                 * An explanation of what's happening here, for those who want
                 * to understand the source: This performs the "non-maximal
                 * supression" phase of the Canny edge detection in which we
                 * need to compare the gradient magnitude to that in the
                 * direction of the gradient; only if the value is a local
                 * maximum do we consider the point as an edge candidate.
                 *
                 * We need to break the comparison into a number of different
                 * cases depending on the gradient direction so that the
                 * appropriate values can be used. To avoid computing the
                 * gradient direction, we use two simple comparisons: first we
                 * check that the partial derivatives have the same sign (1)
                 * and then we check which is larger (2). As a consequence, we
                 * have reduced the problem to one of four identical cases that
                 * each test the central gradient magnitude against the values at
                 * two points with 'identical support'; what this means is that
                 * the geometry required to accurately interpolate the magnitude
                 * of gradient function at those points has an identical
                 * geometry (upto right-angled-rotation/reflection).
                 *
                 * When comparing the central gradient to the two interpolated
                 * values, we avoid performing any divisions by multiplying both
                 * sides of each inequality by the greater of the two partial
                 * derivatives. The common comparand is stored in a temporary
                 * variable (3) and reused in the mirror case (4).
                 *
                 */
                if (xGrad * yGrad <= (float) 0 /*(1)*/
                        ? Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
                        ? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * neMag - (xGrad + yGrad) * eMag) /*(3)*/
                        && tmp > Math.abs(yGrad * swMag - (xGrad + yGrad) * wMag) /*(4)*/
                        : (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * neMag - (yGrad + xGrad) * nMag) /*(3)*/
                        && tmp > Math.abs(xGrad * swMag - (yGrad + xGrad) * sMag) /*(4)*/
                        : Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
                        ? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * seMag + (xGrad - yGrad) * eMag) /*(3)*/
                        && tmp > Math.abs(yGrad * nwMag + (xGrad - yGrad) * wMag) /*(4)*/
                        : (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * seMag + (yGrad - xGrad) * sMag) /*(3)*/
                        && tmp > Math.abs(xGrad * nwMag + (yGrad - xGrad) * nMag) /*(4)*/
                        ) {
                    magnitude[index] = gradMag >= MAGNITUDE_LIMIT ? MAGNITUDE_MAX : (int) (MAGNITUDE_SCALE * gradMag);
                    //NOTE: The orientation of the edge is not employed by this
                    //implementation. It is a simple matter to compute it at
                    //this point as: Math.atan2(yGrad, xGrad);
                } else {
                    magnitude[index] = 0;
                }
            }
        }
    }

    private float hypot(float x, float y) {
        return (float) Math.hypot(x, y);
    }

    private float gaussian (float x, float sigma) {
        return (float) Math.exp(-(x * x) / (2f * sigma * sigma));
    } //I guess the box blur basically doesn't use this shit

    private void performHysteresis(int low, int high) {
        //NOTE: this implementation reuses the data array to store both
        //luminance data from the image, and edge intensity from the processing.
        //This is done for memory efficiency, other implementations may wish
        //to separate these functions.
        Arrays.fill(data, 0);

        int offset = 0;
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {
                if (data[offset] == 0 && magnitude[offset] >= high) {
                    follow(x, y, offset, low, 0);
                }
                offset++;
            }
        }
    }

    private void follow(int x1, int y1, int i1, int threshold, int depth) {
        if( depth > mFollowStackDepth)  // don't run out of stack!
            return;
        int x0 = x1 == 0 ? x1 : x1 - 1;
        int x2 = x1 == width - 1 ? x1 : x1 + 1;
        int y0 = y1 == 0 ? y1 : y1 - 1;
        int y2 = y1 == height -1 ? y1 : y1 + 1;

        data[i1] = magnitude[i1];
        for (int x = x0; x <= x2; x++) {
            for (int y = y0; y <= y2; y++) {
                int i2 = x + y * width;
                if ((y != y1 || x != x1)
                        && data[i2] == 0
                        && magnitude[i2] >= threshold) {
                    follow(x, y, i2, threshold, depth+1);
                    return;
                }
            }
        }

    }

    private void thresholdEdges() {
        for (int i = 0 ; i < picSize ; i++) {
            data[i] = data[i] > 0 ? -1 : 0xff000000;
        }
    }


    private void writeEdges (int pixels[]) {
        if (edgesImg == null) {
            edgesImg = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888);
        }

        edgesImg.setPixels(pixels, 0, width, 0, 0, width, height);
    }

}

1 个答案:

答案 0 :(得分:2)

您在Android上进行图像处理的一些建议:

  1. 不要在Java中对大型数组实现每元素操作 码。这是非常低效的。而是在RenderScript中或在 使用JNI的C / C ++。这个建议与你没有直接关系 问题,但它会对你的程序性能产生巨大影响。

  2. 为避免内存问题,请勿直接在大图像上操作。 通常,Android设备的内存(RAM)远远少于传统设备 计算设备。相反,将图像分成小块和 一个接一个地操作它们。这项技术应该适用于所有 上面程序中的操作。当这是不可能的 (例如,某些算法的输入不是所有附近的像素),你 可缩小图像并对缩放图像进行操作,然后 将结果缩放回原始图像。这影响了 结果的准确性有点,但比接收要好 OutOfMemoryError

  3. 希望这些建议有所帮助。