我在threeJS中有一个可以向任何方向旋转的地球仪。就像目前一样,无论旋转如何,我都可以读取位于地球中心的正确经度和纬度。地球的方向是raycaster.ray.origin.x和raycaster.ray.origin.y读取0,0,其中本初子午线和赤道交叉。 raycaster.ray.origin.z读取500。
然而,我想要去的地方是根据鼠标在地球上的点击位置来确定纬度和经度。我试图从raycaster.ray.direction.x,y,z计算它,但是我得到了读数是否我在对象上。
如果我从原点0,0读取方向,我的raycaster.ray.direction.x和y都将读取0并且z将读取-100(我将这些乘以100以使用更好的数字)。在圆周上,X将在地球的顶部和底部读取0,从左到右读取-40到40。 Y将从上到下读取40到-40,从左到右读取0,并且Z方向将围绕整个圆周-90。然而,数字将继续增加/减少,一直到屏幕的边缘。
当地球仪朝向北极/南极时也是如此,但是,中心的y在圆周上为-100/100和-90/90,x为 - 100/100四分之一在全球各地和-90/90周围。
是一种获取我点击的位置的值的方法,只是在对象而不是整个屏幕上?我不知道如何将方向与原点相关联。我觉得我到了某个地方,但随后又感到困惑。这是我得到的一切。任何帮助将非常感激。
<!DOCTYPE html>
<html lang="en">
<head>
<title>latAndLong</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
<style>
body {
color: #808080;
font-family:Monospace;
font-size:13px;
text-align:center;
background-color: #ffffff;
margin: 0px;
overflow: hidden;
}
#info {
position: absolute;
top: 0px; width: 100%;
padding: 5px;
}
a {
color: #0080ff;
}
</style>
</head>
<body>
<div id="container"></div>
<div id="info"><a href="http://threejs.org" target="_blank">three.js</a> - earth demo</div>
<script src="javascript/mrdoob-three.js-ad419d4/build/three.min.js"></script>
<script src="javascript/TrackballControls.js"></script>
<script>
var container, stats;
var camera, scene, renderer;
var group;
var mouseX = 0, mouseY = 0;
var mesh;
var windowHalfX = window.innerWidth / 2;
var windowHalfY = window.innerHeight / 2;
var earthgeometry;
var earthmaterial;
var earthloader;
var vector;
var raycaster;
projector = new THREE.Projector();
var text, plane;
init();
animate();
function init() {
container = document.getElementById( 'container' );
camera = new THREE.PerspectiveCamera( 60, window.innerWidth / window.innerHeight, 1, 2000 );
camera.position.z = 500;
scene = new THREE.Scene();
group = new THREE.Object3D();
scene.add( group );
// earth
earthloader = new THREE.TextureLoader();
earthloader.load( 'images/oMap.png', function ( texture ) {
earthgeometry = new THREE.SphereGeometry( 200, 50, 50 );
earthmaterial = new THREE.MeshBasicMaterial( { map: texture, overdraw: true } );
mesh = new THREE.Mesh( earthgeometry, earthmaterial );
group.add( mesh );
} );
//init renderer
renderer = new THREE.CanvasRenderer();
renderer.setSize( window.innerWidth, window.innerHeight );
container.appendChild( renderer.domElement );
window.addEventListener( 'resize', onWindowResize, false );
// trackball mouse controls
// Control Camera with Mouse
controls = new THREE.TrackballControls( camera, container );
controls.rotateSpeed = 1.0;
controls.zoomSpeed = 1.2;
controls.panSpeed = 0.8;
controls.noZoom = true;
controls.noPan = true;
controls.staticMoving = true;
controls.dynamicDampingFactor = 0.3;
controls.keys = [ 65, 83, 68 ];
controls.addEventListener( 'change', render );
}
function onWindowResize() {
windowHalfX = window.innerWidth / 2;
windowHalfY = window.innerHeight / 2;
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize( window.innerWidth, window.innerHeight );
}
function animate() {
requestAnimationFrame( animate );
// Update the Camera Controls
controls.update();
render();
}
function render() {
/*camera.position.x += ( mouseX -camera.position.x) * 0.05;
camera.position.y += ( - mouseY - camera.position.y ) * 0.05;
camera.lookAt( scene.position );*/
renderer.render( scene, camera );
}
container.onmouseup = function(event) {
vector = new THREE.Vector3( ( event.clientX / window.innerWidth ) * 2 - 1, - ( event.clientY / window.innerHeight ) * 2 + 1, 0.5);
projector.unprojectVector( vector, camera );
raycaster = new THREE.Raycaster(camera.position, vector.sub( camera.position ).normalize());
// var intersects = raycaster.intersectObjects(earthgeometry, true);
// not working
// console.log(intersects[0].position.x + ' intersect x');
// not working
// console.log(intersects[0].postion.y + ' intersect y');
// console.log(vector.x + 'vector x');
// console.log(raycaster.ray.origin.x + ' origin x');
// console.log(vector.y + 'vector y');
// console.log(raycaster.ray.origin.y + ' origin y');
// console.log(vector.z + 'vector z');
// console.log(raycaster.ray.origin.z + ' origin z');
// console.log(vector);
// console.log(raycaster);
// console.log(earthgeometry);
// console.log(earthmaterial);
// console.log(earthloader);
// console.log(raycaster.ray.origin.z + 'ray origin z');
// console.log(group);
// console.log(scene);
//Gets latitude and longitude for the center of globe facing you
var long;
if(raycaster.ray.origin.x <= 0 && raycaster.ray.origin.z >=0 ) {
long = raycaster.ray.origin.x * -.18;
console.log('West');
console.log(long);
console.log(raycaster.ray.direction.x * 100 + 'ray x');
} else if (raycaster.ray.origin.x <= 0 && raycaster.ray.origin.z <=0 ) {
long = (raycaster.ray.origin.x + 500) * .18 + 90;
console.log('West');
console.log(long);
console.log(raycaster.ray.direction.x * 100 + 'ray x');
} else if (raycaster.ray.origin.x >= 0 && raycaster.ray.origin.z >=0 ) {
long = raycaster.ray.origin.x * .18;
console.log('East');
console.log(long);
console.log(raycaster.ray.direction.x * 100 + 'ray x');
} else {
long = (raycaster.ray.origin.x - 500) * -.18 + 90;
console.log('East');
console.log(long);
console.log(raycaster.ray.direction.x * 100 + 'ray x');
}
var lat;
if (raycaster.ray.origin.y >= 0) {
lat = raycaster.ray.origin.y * .18;
console.log('North');
console.log(lat);
console.log(raycaster.ray.direction.y * 100 + 'ray y');
console.log(raycaster.ray.direction.z * 100 + 'ray z');
} else {
lat = raycaster.ray.origin.y * -.18;
console.log('South');
console.log(lat);
console.log(raycaster.ray.direction.y * 100 + 'ray y');
console.log(raycaster.ray.direction.z * 100 + 'ray z');
}
}
</script>
</body>
</html>