我在mysql中有这个表,我在每个ITEM的每个不同ID的出现(CNT列):
ID ITEM CNT
---------------------
01 093 4
01 129F 2
01 AB56 0
01 BB44 0
01 XH7 0
01 TYE2 1
02 093 0
02 129F 3
02 AB56 1
02 BB44 0
02 XH7 2
02 TYE2 2
03 093 9
03 129F 2
03 AB56 0
03 BB44 1
03 XH7 4
03 TYE2 0
......
我想找到一种将这些数据从MySQL导入Python的有效方法,因此我可以将它们用作聚类过程的项目计数向量,以列表的形式出现:
[[4,2,0,0,0,1],[0,3,1,0,2,2],[9,2,0,1,4,0]]
其中每个列表代表一个ID ...... 我正在处理大量数据(数百万行),因此性能是个问题。 任何帮助将不胜感激
答案 0 :(得分:1)
...
cursor.execute('SELECT ID, CNT FROM table_name ORDER BY ID')
item_count_vector = [
[cnt for id_, cnt in grp]
for key, grp in itertools.groupby(cursor.fetchall(), key=lambda row: row[0])
]
OR(如果您使用DictCursor
- 像游标一样)
item_count_vector = [
[d['CNT'] for d in grp]
for key, grp in itertools.groupby(cursor.fetchall(), key=lambda row: row['ID'])
]
...
>>> import itertools
>>> # Assume following rows are retrieved from DB using cursor.fetchall()
>>> rows = (
... ('01',4),
... ('01',2),
... ('01',0),
... ('01',0),
... ('01',0),
... ('01',1),
... ('02',0),
... ('02',3),
... ('02',1),
... ('02',0),
... ('02',2),
... ('02',2),
... ('03',9),
... ('03',2),
... ('03',0),
... ('03',1),
... ('03',4),
... ('03',0),
... )
>>> [[cnt for id_, cnt in grp] for key, grp in itertools.groupby(rows, key=lambda row: row[0])]
[[4, 2, 0, 0, 0, 1], [0, 3, 1, 0, 2, 2], [9, 2, 0, 1, 4, 0]]