将事件列表转换为每两分钟一系列事件数

时间:2013-08-03 00:25:18

标签: r time bins

两个密切相关的帖子是herehere。我无法将这些中的任何一个翻译成我的确切情况。

这是一个时代的载体:

start.time = as.POSIXct("2013-06-20 01:00:00")
x = start.time + runif(5, min = 0, max = 8*60)
x = x[order(x)]
x
# [1] "2013-06-20 01:00:30 EDT" "2013-06-20 01:00:57 EDT"
# [3] "2013-06-20 01:01:43 EDT" "2013-06-20 01:04:01 EDT"
# [5] "2013-06-20 01:04:10 EDT"

接下来,这是一个两分钟标记的向量:

y = seq(as.POSIXct("2013-06-20 01:00:00"), as.POSIXct("2013-06-20 01:06:00"), 60*2)
y
# [1] "2013-06-20 01:00:00 EDT" "2013-06-20 01:02:00 EDT"
# [3] "2013-06-20 01:04:00 EDT" "2013-06-20 01:06:00 EDT"

我想快速,灵活,可扩展的方式来生成x元素的计数,这些元素落入y每个元素右侧的两分钟区间,就像这样:

                    y count.x
1 2013-06-20 01:00:00       3
2 2013-06-20 01:02:00       0
3 2013-06-20 01:04:00       2
4 2013-06-20 01:06:00       0

2 个答案:

答案 0 :(得分:3)

怎么样

as.data.frame(table(cut(x, breaks=c(y, Inf))))

                 Var1 Freq
1 2013-06-20 01:00:00    3
2 2013-06-20 01:02:00    0
3 2013-06-20 01:04:00    2
4 2013-06-20 01:06:00    0

答案 1 :(得分:0)

这是一个解决问题的函数,的运行速度比table(cut(...)) 快得多:

get.bin.counts = function(x, name.x = "x", start.pt, end.pt, bin.width){
  br.pts = seq(start.pt, end.pt, bin.width)
  x = x[(x >= start.pt)&(x <= end.pt)]
  counts = hist(x, breaks = br.pts, plot = FALSE)$counts
  dfm = data.frame(br.pts[-length(br.pts)], counts)
  names(dfm) = c(name.x, "freq")
  return(dfm)
}

这里的关键线位于中间 - counts = hist(...。将绘图选项设置为hist的{​​{1}}函数至关重要。

为测试此功能的速度性能,我按如下方式运行:

FALSE

通过这个示例,我的函数比# First define x, a large vector of times: start.time = as.POSIXct("2012-11-01 00:00:00") x = start.time + runif(50000, min = 0, max = 365*24*3600) x = x[order(x)] # Apply the function, keeping track of running time: t1 = Sys.time() dfm = get.bin.counts(x, name.x = "time", start.pt = as.POSIXct("2012-11-01 00:00:00"), end.pt = as.POSIXct("2013-07-01 00:00:00"), bin.width = 60) as.numeric(Sys.time()-t1) #prints elapsed time 的运行速度快了10倍。信用归因于table(cut(...)) help page,它指出“而不是{ {1}},cut效率更高,内存更少。“