MySQL / PHP:通过tag / taxonomy查找类似/相关项目

时间:2013-08-02 14:53:03

标签: php mysql relationship tagging

我有一个像这样的城市表。

|id| Name    |
|1 | Paris   |
|2 | London  |
|3 | New York|

我有一个看起来像这样的标签表。

|id| tag            |
|1 | Europe         |
|2 | North America  |   
|3 | River          |

和cities_tags表:

|id| city_id | tag_id |
|1 | 1       | 1      | 
|2 | 1       | 3      | 
|3 | 2       | 1      |
|4 | 2       | 3      | 
|5 | 3       | 2      |     
|6 | 3       | 3      |

如何计算哪个是最密切相关的城市?例如。如果我在城市1(巴黎)看,结果应该是:伦敦(2),纽约(3)

我找到了Jaccard index,但我不确定如何最好地实现这一点。

5 个答案:

答案 0 :(得分:15)

您对 的疑问如何计算哪个是最密切相关的城市?例如。如果我正在查看1号城市(巴黎),结果应该是:伦敦(2),纽约(3) ,根据您提供的数据集,只有一件事可以联系到城市之间的共同标签,因此共享公共标签的城市将是下面最接近的城市是子查询,它查找共享公共标签的城市(提供其他城市以找到最近的城市)

SELECT * FROM `cities`  WHERE id IN (
SELECT city_id FROM `cities_tags` WHERE tag_id IN (
SELECT tag_id FROM `cities_tags` WHERE city_id=1) AND city_id !=1 )

工作

我假设您将输入一个城市ID或名称,以便在我的案例中找到他们最接近的一个“巴黎”有一个id

 SELECT tag_id FROM `cities_tags` WHERE city_id=1

它会找到paris当时的所有标签ID

SELECT city_id FROM `cities_tags` WHERE tag_id IN (
    SELECT tag_id FROM `cities_tags` WHERE city_id=1) AND city_id !=1 )

它将获取除巴黎之外的所有城市,这些城市具有与巴黎相同的标签

这是您的Fiddle

虽然阅读 Jaccard相似度/指数,但发现了一些要了解实际条款的内容,我们有两套A&乙

  

设置A = {A,B,C,D,E}

     

设置B = {I,H,G,F,E,D}

     

计算jaccard相似度的公式是JS =(A交叉B)/(A   联盟B)

     

交叉点B = {D,E} = 2

     

联盟B = {A,B,C,D,E,I,H,G,F} = 9

     

JS = 2/9 = 0.2222222222222222

现在转向你的场景

  

巴黎有tag_ids 1,3所以我们制作一套这个并调用我们的Set   P = {欧洲,河流}

     

伦敦有tag_ids 1,3所以我们制作一套这个并打电话给我们   设L = {欧洲,河}

     

纽约有tag_ids 2,3所以我们制作了这个,并打电话给我们   设置NW = {北美,河}

     

使用伦敦JSPL = P与L / P联盟L交叉推算JS Paris   JSPL = 2/2 = 1

     

使用纽约JSPNW = P与NW / P相交来判断JS Paris   union NW,JSPNW = 1/3 = 0.3333333333

到目前为止,这是查询完美的jaccard索引,您可以看到下面的小提琴示例

SELECT a.*, 
( (CASE WHEN a.`intersect` =0 THEN a.`union` ELSE a.`intersect` END ) /a.`union`) AS jaccard_index 
 FROM (
SELECT q.* ,(q.sets + q.parisset) AS `union` , 
(q.sets - q.parisset) AS `intersect`
FROM (
SELECT cities.`id`, cities.`name` , GROUP_CONCAT(tag_id SEPARATOR ',') sets ,
(SELECT  GROUP_CONCAT(tag_id SEPARATOR ',')  FROM `cities_tags` WHERE city_id= 1)AS parisset

FROM `cities_tags` 
LEFT JOIN `cities` ON (cities_tags.`city_id` = cities.`id`)
GROUP BY city_id ) q
) a ORDER BY jaccard_index DESC 

在上面的查询中,我已经将结果集派生为两个子选择,以便获取我的自定义计算别名

enter image description here

您可以在上面的查询中添加过滤器,以便不计算与自身的相似性

SELECT a.*, 
( (CASE WHEN a.`intersect` =0 THEN a.`union` ELSE a.`intersect` END ) /a.`union`) AS jaccard_index 
 FROM (
SELECT q.* ,(q.sets + q.parisset) AS `union` , 
(q.sets - q.parisset) AS `intersect`
FROM (
SELECT cities.`id`, cities.`name` , GROUP_CONCAT(tag_id SEPARATOR ',') sets ,
(SELECT  GROUP_CONCAT(tag_id SEPARATOR ',')  FROM `cities_tags` WHERE city_id= 1)AS parisset

FROM `cities_tags` 
LEFT JOIN `cities` ON (cities_tags.`city_id` = cities.`id`) WHERE  cities.`id` !=1
GROUP BY city_id ) q
) a ORDER BY jaccard_index DESC

结果显示巴黎与伦敦密切相关,然后与纽约有关

Jaccard Similarity Fiddle

答案 1 :(得分:7)

select c.name, cnt.val/(select count(*) from cities) as jaccard_index
from cities c 
inner join 
  (
  select city_id, count(*) as val 
  from cities_tags 
  where tag_id in (select tag_id from cities_tags where city_id=1) 
  and not city_id in (1)
  group by city_id
  ) as cnt 
on c.id=cnt.city_id
order by jaccard_index desc

此查询静态引用city_id=1,因此您必须在where tag_id in子句和not city_id in子句中创建该变量。

如果我正确理解了Jaccard索引,那么它也会返回由“最密切相关”排序的值。我们的示例中的结果如下所示:

|name      |jaccard_index  |
|London    |0.6667         |
|New York  |0.3333         |

修改

更好地了解如何实施Jaccard Index:

在维基百科上阅读了关于Jaccard Index的更多信息之后,我想出了一个更好的方法来实现我们的示例数据集的查询。基本上,我们将独立地将我们选择的城市与列表中的每个城市进行比较,并使用共同标签的数量除以两个城市之间选择的不同总标签的数量。

select c.name, 
  case -- when this city's tags are a subset of the chosen city's tags
    when not_in.cnt is null 
  then -- then the union count is the chosen city's tag count
    intersection.cnt/(select count(tag_id) from cities_tags where city_id=1) 
  else -- otherwise the union count is the chosen city's tag count plus everything not in the chosen city's tag list
    intersection.cnt/(not_in.cnt+(select count(tag_id) from cities_tags where city_id=1)) 
  end as jaccard_index
  -- Jaccard index is defined as the size of the intersection of a dataset, divided by the size of the union of a dataset
from cities c 
inner join 
  (
    --  select the count of tags for each city that match our chosen city
    select city_id, count(*) as cnt 
    from cities_tags 
    where tag_id in (select tag_id from cities_tags where city_id=1) 
    and city_id!=1
    group by city_id
  ) as intersection
on c.id=intersection.city_id
left join
  (
    -- select the count of tags for each city that are not in our chosen city's tag list
    select city_id, count(tag_id) as cnt
    from cities_tags
    where city_id!=1
    and not tag_id in (select tag_id from cities_tags where city_id=1)
    group by city_id
  ) as not_in
on c.id=not_in.city_id
order by jaccard_index desc

查询有点冗长,我不知道它的扩展程度如何,但它确实实现了一个真正的Jaccard索引,正如问题所要求的那样。以下是新查询的结果:

+----------+---------------+
| name     | jaccard_index |
+----------+---------------+
| London   |        1.0000 |
| New York |        0.3333 |
+----------+---------------+

再次编辑以向查询添加评论,并考虑当前城市的标签是所选城市标签的子集时

答案 2 :(得分:2)

此查询没有任何奇特的功能甚至是子查询。它很快。只需确保cities.id,cities_tags.id,cities_tags.city_id和cities_tags.tag_id都有索引。

查询返回的结果包含: city1 city2 以及计数 city1和city2共有多少个标签。

select
    c1.name as city1
    ,c2.name as city2
    ,count(ct2.tag_id) as match_count
from
    cities as c1
    inner join cities as c2 on
        c1.id != c2.id              -- change != into > if you dont want duplicates
    left join cities_tags as ct1 on -- use inner join to filter cities with no match
        ct1.city_id = c1.id
    left join cities_tags as ct2 on -- use inner join to filter cities with no match
        ct2.city_id = c2.id
        and ct1.tag_id = ct2.tag_id
group by
    c1.id
    ,c2.id
order by
    c1.id
    ,match_count desc
    ,c2.id

!=更改为>,以避免每个城市被退回两次。这意味着一个城市将不再出现在第一列中,也不再出现在第二列中。

如果您不希望看到没有标记匹配的城市组合,请将两个left join更改为inner join

答案 3 :(得分:2)

太迟了,但我认为没有一个答案是完全正确的。我得到了每个人最好的部分,并将所有人放在一起做出我自己的答案:

  • @ m-khalid-junaid的 Jaccard Index 解释非常有趣且正确,但(q.sets + q.parisset) AS unionunion的实施非常强烈错即可。
  • @ n-lx的版本是这样的,但是需要Jaccard Index ,这非常重要,如果一个城市有2个标签并且匹配另一个城市的两个标签有3个标签,结果将与另一个城市的匹配相同,只有相同的两个标签。我认为完整的比赛是最相关的。

我的回答:

像这样的

(q.sets - q.parisset) AS intersect表。

intersect
像这样的

cities表。

| id | Name      |
| 1  | Paris     |
| 2  | Florence  |
| 3  | New York  |
| 4  | São Paulo |
| 5  | London    |

根据此示例数据,佛罗伦萨与巴黎完整匹配纽约匹配一个标记圣保罗无标记匹配,伦敦匹配两个标记,还有另一个。我认为这个样本的Jaccard指数是:

  

佛罗伦萨: 1.000(2/2)

     

伦敦: 0.666(2/3)

     

纽约: 0.333(1/3)

     

圣保罗: 0.000(0/3)

我的查询是这样的:

cities_tag

SQL Fidde

答案 4 :(得分:1)

这可能是推动正确的方向吗?

SELECT cities.name, ( 
                    SELECT cities.id FROM cities
                    JOIN cities_tags ON cities.id=cities_tags.city_id
                    WHERE tags.id IN(
                                     SELECT cities_tags.tag_id
                                     FROM cites_tags
                                     WHERE cities_tags.city_id=cites.id
                                     )
                    GROUP BY cities.id
                    HAVING count(*) > 0
                    ) as matchCount 
FROM cities
HAVING matchCount >0

我试过的是:

//找到城市名:
获取city.names(SUBQUERY)作为matchCount FROM cities WHERE matchCount> 0

//子查询:
选择城市拥有的标签数量(SUBSUBQUERY)还有

//子查询
选择原始名称的标签ID