我还在学习如何将SAS代码翻译成R,然后收到警告。我需要了解我犯错误的地方。我想要做的是创建一个变量来总结和区分人口的3种状态:大陆,海外,外国人。 我有一个包含2个变量的数据库:
idnat
(法国人,外国人),如果idnat
是法国人,那么:
idbp
(大陆,殖民地,海外)我想将idnat
和idbp
中的信息汇总成一个名为idnat2
的新变量:
所有这些变量都使用“字符类型”。
列idnat2中的预期结果:
idnat idbp idnat2
1 french mainland mainland
2 french colony overseas
3 french overseas overseas
4 foreign foreign foreign
这是我要在R中翻译的SAS代码:
if idnat = "french" then do;
if idbp in ("overseas","colony") then idnat2 = "overseas";
else idnat2 = "mainland";
end;
else idnat2 = "foreigner";
run;
这是我在R中的尝试:
if(idnat=="french"){
idnat2 <- "mainland"
} else if(idbp=="overseas"|idbp=="colony"){
idnat2 <- "overseas"
} else {
idnat2 <- "foreigner"
}
我收到此警告:
Warning message:
In if (idnat=="french") { :
the condition has length > 1 and only the first element will be used
我被建议使用“嵌套ifelse
”代替其容易,但会收到更多警告:
idnat2 <- ifelse (idnat=="french", "mainland",
ifelse (idbp=="overseas"|idbp=="colony", "overseas")
)
else (idnat2 <- "foreigner")
根据警告信息,长度大于1,因此只考虑第一个括号之间的长度。对不起,但我不明白这个长度与这里有什么关系?谁知道我哪里错了?
答案 0 :(得分:95)
如果您使用的是任何电子表格应用程序,则基本函数if()
的语法为:
if(<condition>, <yes>, <no>)
R中的ifelse()
语法完全相同:
ifelse(<condition>, <yes>, <no>)
电子表格应用程序中if()
的唯一区别是R ifelse()
被向量化(将向量作为输入并在输出时返回向量)。考虑以下电子表格应用程序和R中的公式比较,我们希望比较一个&gt; b如果是则返回1,否则返回0。
在电子表格中:
A B C
1 3 1 =if(A1 > B1, 1, 0)
2 2 2 =if(A2 > B2, 1, 0)
3 1 3 =if(A3 > B3, 1, 0)
在R:
> a <- 3:1; b <- 1:3
> ifelse(a > b, 1, 0)
[1] 1 0 0
ifelse()
可以通过多种方式嵌套:
ifelse(<condition>, <yes>, ifelse(<condition>, <yes>, <no>))
ifelse(<condition>, ifelse(<condition>, <yes>, <no>), <no>)
ifelse(<condition>,
ifelse(<condition>, <yes>, <no>),
ifelse(<condition>, <yes>, <no>)
)
ifelse(<condition>, <yes>,
ifelse(<condition>, <yes>,
ifelse(<condition>, <yes>, <no>)
)
)
要计算列idnat2
,您可以:
df <- read.table(header=TRUE, text="
idnat idbp idnat2
french mainland mainland
french colony overseas
french overseas overseas
foreign foreign foreign"
)
with(df,
ifelse(idnat=="french",
ifelse(idbp %in% c("overseas","colony"),"overseas","mainland"),"foreign")
)
什么是the condition has length > 1 and only the first element will be used
?我们来看看:
> # What is first condition really testing?
> with(df, idnat=="french")
[1] TRUE TRUE TRUE FALSE
> # This is result of vectorized function - equality of all elements in idnat and
> # string "french" is tested.
> # Vector of logical values is returned (has the same length as idnat)
> df$idnat2 <- with(df,
+ if(idnat=="french"){
+ idnat2 <- "xxx"
+ }
+ )
Warning message:
In if (idnat == "french") { :
the condition has length > 1 and only the first element will be used
> # Note that the first element of comparison is TRUE and that's whay we get:
> df
idnat idbp idnat2
1 french mainland xxx
2 french colony xxx
3 french overseas xxx
4 foreign foreign xxx
> # There is really logic in it, you have to get used to it
我还可以使用if()
吗?是的,你可以,但语法不是很酷:)
test <- function(x) {
if(x=="french") {
"french"
} else{
"not really french"
}
}
apply(array(df[["idnat"]]),MARGIN=1, FUN=test)
答案 1 :(得分:10)
尝试以下内容:
# some sample data
idnat <- sample(c("french","foreigner"),100,TRUE)
idbp <- rep(NA,100)
idbp[idnat=="french"] <- sample(c("mainland","overseas","colony"),sum(idnat=="french"),TRUE)
# recoding
out <- ifelse(idnat=="french" & !idbp %in% c("overseas","colony"), "mainland",
ifelse(idbp %in% c("overseas","colony"),"overseas",
"foreigner"))
cbind(idnat,idbp,out) # check result
您的困惑来自于SAS和R如何处理if-else结构。在R中,if
和else
没有矢量化,这意味着它们会检查单个条件是否为真(即if("french"=="french")
有效)并且无法处理多个逻辑(即if(c("french","foreigner")=="french")
不起作用)R会给你你收到的警告。
相比之下,ifelse
是矢量化的,所以它可以采用你的矢量(也就是输入变量)并测试每个元素的逻辑条件,就像你在SAS中习惯的那样。另一种包围你的方法是使用if
和else
语句构建一个循环(正如你在这里开始做的那样)但是矢量化ifelse
方法会更多效率高,通常涉及的代码较少。
答案 2 :(得分:8)
如果数据集包含许多行,则使用data.table
而不是嵌套ifelse()
加入查找表可能更有效。
提供下面的查找表
lookup
idnat idbp idnat2 1: french mainland mainland 2: french colony overseas 3: french overseas overseas 4: foreign foreign foreign
和样本数据集
library(data.table)
n_row <- 10L
set.seed(1L)
DT <- data.table(idnat = "french",
idbp = sample(c("mainland", "colony", "overseas", "foreign"), n_row, replace = TRUE))
DT[idbp == "foreign", idnat := "foreign"][]
idnat idbp 1: french colony 2: french colony 3: french overseas 4: foreign foreign 5: french mainland 6: foreign foreign 7: foreign foreign 8: french overseas 9: french overseas 10: french mainland
然后我们可以在加入时执行更新:
DT[lookup, on = .(idnat, idbp), idnat2 := i.idnat2][]
idnat idbp idnat2 1: french colony overseas 2: french colony overseas 3: french overseas overseas 4: foreign foreign foreign 5: french mainland mainland 6: foreign foreign foreign 7: foreign foreign foreign 8: french overseas overseas 9: french overseas overseas 10: french mainland mainland
答案 3 :(得分:7)
您可以创建不含idnat2
和if
的向量ifelse
。
函数replace
可用于将所有"colony"
替换为"overseas"
:
idnat2 <- replace(idbp, idbp == "colony", "overseas")
答案 4 :(得分:3)
将SQL CASE语句与dplyr和sqldf包一起使用:
数据强>
df <-structure(list(idnat = structure(c(2L, 2L, 2L, 1L), .Label = c("foreign",
"french"), class = "factor"), idbp = structure(c(3L, 1L, 4L,
2L), .Label = c("colony", "foreign", "mainland", "overseas"), class = "factor")), .Names = c("idnat",
"idbp"), class = "data.frame", row.names = c(NA, -4L))
<强> sqldf 强>
library(sqldf)
sqldf("SELECT idnat, idbp,
CASE
WHEN idbp IN ('colony', 'overseas') THEN 'overseas'
ELSE idbp
END AS idnat2
FROM df")
<强> dplyr 强>
library(dplyr)
df %>%
mutate(idnat2 = case_when(.$idbp == 'mainland' ~ "mainland",
.$idbp %in% c("colony", "overseas") ~ "overseas",
TRUE ~ "foreign"))
<强>输出强>
idnat idbp idnat2
1 french mainland mainland
2 french colony overseas
3 french overseas overseas
4 foreign foreign foreign
答案 5 :(得分:1)
使用data.table,解决方案是:
DT[, idnat2 := ifelse(idbp %in% "foreign", "foreign",
ifelse(idbp %in% c("colony", "overseas"), "overseas", "mainland" ))]
ifelse
是矢量化的。 if-else
不是。{1}}。这里,DT是:
idnat idbp
1 french mainland
2 french colony
3 french overseas
4 foreign foreign
这给出了:
idnat idbp idnat2
1: french mainland mainland
2: french colony overseas
3: french overseas overseas
4: foreign foreign foreign
答案 6 :(得分:0)
# Read in the data.
idnat=c("french","french","french","foreign")
idbp=c("mainland","colony","overseas","foreign")
# Initialize the new variable.
idnat2=as.character(vector())
# Logically evaluate "idnat" and "idbp" for each case, assigning the appropriate level to "idnat2".
for(i in 1:length(idnat)) {
if(idnat[i] == "french" & idbp[i] == "mainland") {
idnat2[i] = "mainland"
} else if (idnat[i] == "french" & (idbp[i] == "colony" | idbp[i] == "overseas")) {
idnat2[i] = "overseas"
} else {
idnat2[i] = "foreign"
}
}
# Create a data frame with the two old variables and the new variable.
data.frame(idnat,idbp,idnat2)
答案 7 :(得分:0)
使用示例进行解释是帮助我解决问题的关键,但是我遇到的问题是当我复制它时不起作用,因此我不得不以多种方式使其混乱以使其正常工作。 (我是R的超级新手,由于缺乏知识,我对第三个ifelse遇到了一些问题。)
所以对于那些R新手来说会遇到问题...
ifelse(x < -2,"pretty negative", ifelse(x < 1,"close to zero", ifelse(x < 3,"in [1, 3)","large")##all one line
)#normal tab
)
(我在函数中使用了它,因此将“ ifelse ...”标记为一个,但是最后一个“)”完全在左侧)
答案 8 :(得分:-1)
很抱歉加入聚会太晚了。这是一个简单的解决方案。
#building up your initial table
idnat <- c(1,1,1,2) #1 is french, 2 is foreign
idbp <- c(1,2,3,4) #1 is mainland, 2 is colony, 3 is overseas, 4 is foreign
t <- cbind(idnat, idbp)
#the last column will be a vector of row length = row length of your matrix
idnat2 <- vector()
#.. and we will populate that vector with a cursor
for(i in 1:length(idnat))
#*check that we selected the cursor to for the length of one of the vectors*
{
if (t[i,1] == 2) #*this says: if idnat = foreign, then it's foreign*
{
idnat2[i] <- 3 #3 is foreign
}
else if (t[i,2] == 1) #*this says: if not foreign and idbp = mainland then it's mainland*
{
idnat2[i] <- 2 # 2 is mainland
}
else #*this says: anything else will be classified as colony or overseas*
{
idnat2[i] <- 1 # 1 is colony or overseas
}
}
cbind(t,idnat2)