返回一个素数数组

时间:2013-07-31 06:19:19

标签: java

我需要一种方法来返回数组中的素数。

所以如果给出:primeArray(5)

比这样的数组应该返回:(2,3,5)

出于某种原因,这对我来说似乎不起作用:

public static int[] primeArray(int numFind)
{
    //determines the size of the array returned
    int primeTotal = 0;

    //loop to find total prime numbers
    for (int j = 1; j <= numFind; j ++)
    {
        if (isPrime(j))
        primeTotal +=1;
    }

    //declare array to be returned
    int[] numA = new int[primeTotal];

    //current index of prime number
    int iP = 0;

    //loop to add prime elements to array
    for (int x = 1; x <= numFind; x ++)
    {
        if (isPrime(x))
        {
            numA[iP]=x;
            iP++;    // <--- THIS IS CAUSING ME PROBLEMS
        }

    }

    return numA;
}

public static boolean isPrime(int n)
{
    for (int i = 2; i < n; i++)
    {
        if(n%i==0)
            return false;
    }
    return true;
}

这就是我用来测试代码的原因:

    int[] num = primeArray(11);

    System.out.println(num[0]);
    System.out.println(num[1]);

但是对于输出我得到了这个:

1 
2

但是,如果我评论出iP ++; if if语句最终决定只在素数作为参数传递时才执行:isPrime(j)但是如果失败了primeArray方法的全部目的,因为我需要primeArray方法返回一个素数数组。

8 个答案:

答案 0 :(得分:10)

您的isPrime()方法有问题。您需要为false返回number < 2。此外,您不需要迭代直到 n ,只需迭代直到 n / 2 或甚至更好sqrt(n)

将其更改为:

public static boolean isPrime(int n) {

    if (n < 2) return false;

    int maxIteration = Math.ceil(Math.sqrt(n));

    for (int i = 2; i < maxIteration; i++) {
        if(n % i == 0)
            return false;
    }

    return true;
}

现在,考虑到你的真正问题(注意你的方法很好。如果你改变了你的isPrime()方法,它会返回正确的结果),但你可以避免迭代两次使用ArrayList代替数组

List<Integer> primes = new ArrayList<Integer>();

//loop to find total prime numbers
for (int j = 1; j <= numFind; j ++)
{
    if (isPrime(j))
        primes.add(j);
}

然后您可以返回 primes ,并将方法的返回类型更改为List<Integer>而不是int[]

public static List<Integer> primeNumberList(int numFind)

如果您确实想要返回int[],那么您需要做一些工作,将ArrayList转换为int数组。我把这个任务留给你了。只在SO上搜索这个,你会得到太多帖子。


此外,如果您要生成所有素数,直到非常大的数字,那么您应该看看Sieve of Eratosthenes

答案 1 :(得分:0)

您只需输出第一个数组值......

只需更换输出

for(int i = 0; i < num.length; i++)
{
    System.out.println(num[i]);
}

您的代码运行正常。

答案 2 :(得分:0)

isPrime()方法中,在最后添加一条语句

if(n < 2) return false;

我认为按照目前的方式,当1通过时,你会得到一个真实的。

我能想到的另一个建议是,如果您希望自己的限制很小,可以使用静态表格来获取一些数字。

static int[] PRIME_TABLE = {2,3,5,7,11,13,17,19,23,29,31};

因此,当此示例中的限制小于32时,您不需要计算其下面的所有素数,只需遍历此表并返回数字。

答案 3 :(得分:0)

我尝试以不同的方式编写isPrime(int num)函数。代码变得更多了 冗长但有效。我使用不同的逻辑来识别数字是否为1,因为1既不是素数也不是复合数。代码如下。

   static int count=0;
   static boolean flag;
public static boolean isPrime(int num){

    for(int i = 1; i<=num/2 ; i++){

        if(num%i ==0){

            count++;

            if(count >=2){

                flag = false;    
            }
            else{
                  if( num/1==1){
                      flag = false;
                  }
                  else{
                      flag = true;
                  }

            }

         }
    }
        return flag;
  }

答案 4 :(得分:0)

此代码返回小于n的所有素数

public ArrayList<Integer> allPrimesLessThanN( int n) {

    int sqrtN = (int)Math.sqrt(n);
    int [] numberList = new int[n];
    ArrayList<Integer> primeList = new ArrayList<>();

    for( int i = 0; i < n ; i++) 
    {
        numberList[i] = i+1;
    }

    int k = 2;
    while( k <= sqrtN)
    {
        if(numberList[k+1] != 0)
        {
            for( int j = k+1; j < n; j++)
            {
                if( numberList[j] % k == 0)
                {
                    numberList[j] = 0;
                }
            }
        }

        k++;
    }

    for( int i = 1; i < n; i++)
    {
        if(numberList[i] != 0)
            primeList.add(numberList[i]);
    }

    return primeList;

}

答案 5 :(得分:0)

有几种获取素数数组的方法,最简单的计算方法是使用 Eratatothenes筛子。这会遍历每个递增的数字,在找到下一个质数时,所有此后的倍数都标记为非质数。大多数实现都使用如下所示的布尔数组:

boolean[] numbers = new boolean[max];
// At first, assume every number is prime
for (int i = 0; i < max; i++) 
    numbers[i] = true; 
// Zero and one are not primes
numbers[0] = number[1] = false;

// Begin iteration from 2, the smallest prime
for (int i = 2; i < max; i++) {
    // if i is prime, all multiples of i are not prime
    if (numbers[i]) {
        for (int j = i * 2; j < max; j += i) {
            numbers[j] = false;
        }
    }
}

此方法是一种生成素数数组的快速方法,但是对于较大的最大限制,它可能会占用大量内存。

解决此问题的另一种方法是解决问题的方法,找到该问题时,您只需添加下一个质数即可。不过,您的实施可以从以下方面变得更有效率。

boolean isPrime(double p) {
    if (p < 2) return false;
    for (int i = 2; i <= Math.sqrt(p); i++) if (p % i == 0) return false;
    return true;
}

从罗希特·贾因(Rohit Jain)建议的更正实现开始(如上所述),您可能会发现不必测试小于sqrt(p)的每个数字。如果p无法被n整除,那么它就不会被n的倍数整除-这样,我们只需要测试p以下的每个素数。例如;因为7不能被2整除,所以也不会被4整除。

这里的问题是,我们现在需要找出小于sqrt(p)的数字作为质数来检验p。啊,但是不,我们不!我们可以查看我们已知的素数的缓存列表,稍后将以其他方法返回。在缓存已知素数的列表时,也不需要在其他方法中创建新列表,我们只需返回缓存(一旦生成)即可!成品看起来像这样:

class Primes {

    private static final List<Double> known_primes = new ArrayList<Double>(Collections.singletonList(2d));

    public static boolean isPrime(double p) {
        if (p < 2) return false; // 2 already in our cache
        if (known_primes.contains(p)) return true; // found prime in cache
        for (double i = 3; i <= Math.sqrt(p); i += 2) { // only check odd numbers
            if (!isPrime(i)) continue; // only check primes
            if (p % i == 0) return false; // p is divisible by i, so not prime
        }
        // checked all possible divisors, so p must be prime - cache and sort it!
        known_primes.add(p);
        Collections.sort(known_primes);
        return true;
    }

}

现在您可以使用Primes.isPrime(...)来检查;)

答案 6 :(得分:0)

public class Demo {
public static void main(String[] args) {
    int result[] = ArrayOfPrimeNumbers(30);
    for (int i = 0; i < result.length; i++) {
        System.out.println("Factor: " + result[i]);
    }
}
public static int[] ArrayOfPrimeNumbers(int n) {
    int countPrimeNumbers = 0;
    for (int i = 2; i <= n; i++) {
        if (isPrime(i)) {
            countPrimeNumbers++;
        }
    }
    int newArrayofPrime[] = new int[countPrimeNumbers];
    int count = 0;
    while (count < countPrimeNumbers) {
        for (int i = 2; i <= n; i++) {
            if (isPrime(i)) {
                newArrayofPrime[count] = i;
                count++;
            }
        }
    }
    return newArrayofPrime;
}
public static boolean isPrime(int n) {
    if (n <= 1)
        return false;

    for (int i = 2; i < n; i++)
        if (n % i == 0)
            return false;

    return true;
}

}

答案 7 :(得分:0)

您可以通过使用Sieve算法查找素数来进一步优化它。执行以下步骤可以找到最高达(10 ^ 9)-1的素数。

#include<iostream>//for I/O
#include<vector>//for keeping primes
#include<math.h>//for sqrt()
#define lli long long int
using namespace std;
vector<lli>prime;//using long long int data type for getting result for relatively bigger numbers...you may use int if you are working with smaller numbers.
lli upto;
bool stat[100000001];//Status array to keep track for primes/non-primes (0=prime, 1=non-prime, initially all are 0)
void sieve(lli upto)
{
    lli n=upto;
    stat[0]=stat[1]=1;//Marking 0 and 1 as they are not primes
    for(lli i=4;i<=n;i+=2)//Marking all even numbers as they won't be primes
    {
        stat[i]=1;
    }
    lli sqrtn=sqrt(n);
    //You can check if a number is prime or not just by making sure it is not divisible by any numbers upto it's square-root.
    //The reason of not checking the numbers after that is that if the number is divisible by a number greater than or equal to its square-root,
    //then we surely have already found another number which also divides the number less than or equal to its square root. For example to check if 36 is
    //a prime we can try dividing it with numbers <=sqrt(36) or <=6.We need not go beyond it. Say we need not check with 9 or 12 etc. as we have already checked
    //the divisibility with their conjugates 4 and 3 respectively (as 4*9=36 and 3*12=36) and found that 36 is getting divided, hence non prime.
    for(lli i=3;i<=sqrtn;i+=2)//So continuing this loop upto sqrt(n) and starting from 3 and stepping to only the odd numbers,as we cannot expect an even number to be a prime (except 2)
    {
        if(stat[i]==0)//ith index is still unmarked means it is a prime
        {
            //..so leaving ith index unmarked we are marking all the multiples of i as number i will divide them and they won't be primes.
            //But again we can do some optimizations:
            //(1) The next unmarked number divided by i, greater than i will be i*i. Because numbers less than i*i which is also divided by i are already marked by some numbers<i. An example will make it clear:
            //    Say for 5 we will start marking from 5*5=25, although 15 is divided by 5 but we need not mark it again as it is already marked by 3 (as 3 also divides 15) when we worked with 3.
            //(2) We are advancing our checking 2*i times as we are now searching for primes in odd numbers only, so we are skipping the marking for even numbers (say for 3, starting check from 3*3=9, we will next check 9+2*i=9+2*3=15 (we skipped checking 12 as it is even and we have already marked all even numbers initially (except 2) for being non-primes).
            for(lli j=i*i;j<=n;j+=2*i)
            {
                stat[j]=1;//so marking the indexes corresponding to numbers which are divisible by j as they are non-primes.
            }
        }
    }
    for(lli i=2;i<=n;i++)
    {
        if(stat[i]==0)//Finally finding which are still unmarked as the are not divisible by any number (except divisible by 1 and the number itself as prime number's definition) and the numbers corresponding to these indexes are primes.
        {
            prime.push_back(i);//storing primes, as index i is unmarked so i is a prime.
        }
    }
}
int main()
{
    cout<<"Enter upto which number you want to look for primes: ";
    cin>>upto;
    sieve(upto);
    for(int i=0,z=prime.size();i<z;i++)//printing
    {
        cout<<prime[i]<<" ";
    }
    cout<<endl;
}