熊猫EWMA没有按预期工作

时间:2013-07-30 18:10:40

标签: python pandas

我正在尝试使用pandas计算EWMA,但结果并非我的预期。我认为第4个元素应该是13.179但是熊猫给出13.121。我通过documentation中指定的公式将衰减因子(a)转换为质心。我误解了什么吗?

In[222]: y
Out[222]: 
0          NaN
1          NaN
2    13.192161
3    13.109292
4    12.623850
5    12.150520
Name: data, dtype: float64

In[223]: pd.ewma(y, com = 1.0 / a - 1)
Out[223]: 
0          NaN
1          NaN
2    13.192161
3    13.120667
4    12.701206
5    12.237839
dtype: float64

In[224]: a
Out[224]: 0.8408964152537145

In[225]: a * 13.192161 + (1 - a) * 13.109292
Out[225]: 13.17897624503566

1 个答案:

答案 0 :(得分:1)

由于文档说

a = com/(1 + com)

紧随其后

com = a/(1.0-a)

(对于0 <= a <1)。


此外,还对在开始时段"to account for imbalance in relative weightings"期间计算的值进行了调整。 确认公式

enter image description here

让我们关闭调整:

z = pd.ewma(x, com=a/(1.0-a), adjust=False)
print(z)

然后打印

0         NaN
1         NaN
2    2.098920
3    3.850710
4    5.246548
5    6.344995

这个结果可以通过计算来模仿

import pandas as pd
import numpy as np
import numpy.testing.utils as NTU

nan = np.nan
x = pd.Series([nan, nan, nan, 13.109292, 12.623850, 12.150520])
a = 0.8408964152537145
z = pd.ewma(x, com=a/(1.0-a), adjust=False)

def nanzero(x):
    return 0 if np.isnan(x) else x

x.ffill(inplace=True)
y = [x[0]]
for xt in x[1:]:
    yt1 = y[-1]
    if np.isnan(yt1) and np.isnan(xt):
        yt = nan
    else:
        yt1 = nanzero(yt1)
        xt = nanzero(xt)
        yt = a*yt1 + (1-a)*xt
        # yt = (1-a)*yt1 + a*xt
    y.append(yt)
y = pd.Series(y)

NTU.assert_allclose(y,z)