显示脊方向作为流程图

时间:2013-07-26 11:07:30

标签: python image-processing numpy fingerprint image-segmentation

我试图以指纹图的形式查看指纹的局部脊线方向。但我似乎在这样做时惨遭失败。我的方法包括以下步骤:

  • 使用lro函数
  • 在16x16块中找到最主要的角度
  • 创建一个线段并按主导角度旋转以显示它

问题在于,虽然lro产生的角度很好,但流程图中显示这些角度根本不起作用。在那里,我只是在各种方向上获得了很多随机角度。任何人都可以帮我解决这个问题吗?

以下是我正在使用的代码:

def lro(im_np):
    eps = 2**(-52)
    orientsmoothsigma = 4

#     original
    Gxx = cv2.Sobel(im_np, -1, 2, 0)
    Gxy = cv2.Sobel(im_np, -1, 1, 1)
    Gyy = cv2.Sobel(im_np, -1, 0, 2)



    Gxx = scipy.ndimage.filters.gaussian_filter(Gxx, orientsmoothsigma)
    Gxy = scipy.ndimage.filters.gaussian_filter(Gxy, orientsmoothsigma)
    Gyy = scipy.ndimage.filters.gaussian_filter(Gyy, orientsmoothsigma)

    angle = math.pi/2. + numpy.divide(numpy.arctan2(numpy.multiply(Gxy,2), numpy.subtract(Gxx,Gyy)),2)

    return angle

def createLine(im_np):

    #Assumes it is 17x17
    #Takes in the block-direction
    #returns a block-direction image as a numpy array

    angle = numpy.max(im_np)
#     print im_np.shape
    im = Image.new('L', (im_np.shape[0], im_np.shape[1]), (0))
    draw = ImageDraw.Draw(im) 
    draw.line([(0,im_np.shape[0]/2), (im_np.shape[0],im_np.shape[0]/2)], fill=255)
    im = im.rotate(angle)
    img_np2 = numpy.asarray(im)
#     print img_np2
    return img_np2

def findDomAngle(im_np):
    mask = numpy.zeros((180,2))

    for i in range(180):
        mask[i][0] = i+1

    for i in range(im_np.shape[0]):
        for j in range(im_np.shape[0]):
            mask[im_np[i][j]-1][1] +=  1

    max = 0
    bestdir = 0
    for i in range(180):
        if mask[i][1] > max:
            bestdir = i + 1 
            max = mask[i][1]
#     print mask
#     print max
    return bestdir


def blkdir(angle_mat):
    x = angle_mat.shape[0]
    y = angle_mat.shape[1]
#     print angle_mat

    domAngle = findDomAngle(angle_mat)
#     print domAngle
    blkAngle = angle_mat
    blkAngle.setflags(write=True)

    for i in range(x):
        for j in range(y):
            blkAngle[i][j] = domAngle

    return blkAngle 

我正在应用另一个函数来逐块处理image块,但是这种方法已被证明有效,所以我发现它与包含无关。

0 个答案:

没有答案