如何将mongodb集合中的数据加载到pandas的DataFrame中?

时间:2013-07-23 08:39:23

标签: mongodb pandas pymongo

我是熊猫的新手(嗯,对所有“编程”......),但我们鼓励他们尝试一下。 我有一个mongodb数据库 - “测试” - 有一个名为“推文”的集合。 我在ipython中访问数据库:

import sys
import pymongo
from pymongo import Connection
connection = Connection()
db = connection.test
tweets = db.tweets

推文中文件的文件结构如下:

entities': {u'hashtags': [],
  u'symbols': [],
  u'urls': [],
  u'user_mentions': []},
 u'favorite_count': 0,
 u'favorited': False,
 u'filter_level': u'medium',
 u'geo': {u'coordinates': [placeholder coordinate, -placeholder coordinate], u'type': u'Point'},
 u'id': 349223842700472320L,
 u'id_str': u'349223842700472320',
 u'in_reply_to_screen_name': None,
 u'in_reply_to_status_id': None,
 u'in_reply_to_status_id_str': None,
 u'in_reply_to_user_id': None,
 u'in_reply_to_user_id_str': None,
 u'lang': u'en',
 u'place': {u'attributes': {},
  u'bounding_box': {u'coordinates': [[[placeholder coordinate, placeholder coordinate],
     [-placeholder coordinate, placeholder coordinate],
     [-placeholder coordinate, placeholder coordinate],
     [-placeholder coordinate, placeholder coordinate]]],
   u'type': u'Polygon'},
  u'country': u'placeholder country',
  u'country_code': u'example',
  u'full_name': u'name, xx',
  u'id': u'user id',
  u'name': u'name',
  u'place_type': u'city',
  u'url': u'http://api.twitter.com/1/geo/id/1820d77fb3f65055.json'},
 u'retweet_count': 0,
 u'retweeted': False,
 u'source': u'<a href="http://twitter.com/download/iphone" rel="nofollow">Twitter for iPhone</a>',
 u'text': u'example text',
 u'truncated': False,
 u'user': {u'contributors_enabled': False,
  u'created_at': u'Sat Jan 22 13:42:59 +0000 2011',
  u'default_profile': False,
  u'default_profile_image': False,
  u'description': u'example description',
  u'favourites_count': 100,
  u'follow_request_sent': None,
  u'followers_count': 100,
  u'following': None,
  u'friends_count': 100,
  u'geo_enabled': True,
  u'id': placeholder_id,
  u'id_str': u'placeholder_id',
  u'is_translator': False,
  u'lang': u'en',
  u'listed_count': 0,
  u'location': u'example place',
  u'name': u'example name',
  u'notifications': None,
  u'profile_background_color': u'000000',
  u'profile_background_image_url': u'http://a0.twimg.com/images/themes/theme19/bg.gif',
  u'profile_background_image_url_https': u'https://si0.twimg.com/images/themes/theme19/bg.gif',
  u'profile_background_tile': False,
  u'profile_banner_url': u'https://pbs.twimg.com/profile_banners/241527685/1363314054',
  u'profile_image_url':       u'http://a0.twimg.com/profile_images/378800000038841219/8a71d0776da0c48dcc4ef6fee9f78880_normal.jpeg',
  u'profile_image_url_https':     u'https://si0.twimg.com/profile_images/378800000038841219/8a71d0776da0c48dcc4ef6fee9f78880_normal.jpeg', 
  u'profile_link_color': u'000000',
  u'profile_sidebar_border_color': u'FFFFFF',
  u'profile_sidebar_fill_color': u'000000',
  u'profile_text_color': u'000000',
  u'profile_use_background_image': False,
  u'protected': False,
  u'screen_name': placeholder screen_name',
  u'statuses_count': xxxx,
  u'time_zone': u'placeholder time_zone',
  u'url': None,
  u'utc_offset': -21600,
  u'verified': False}}

现在,据我所知,大熊猫的主要数据结构 - 类似电子表格的表格 - 被称为DataFrame。如何将“tweets”集合中的数据加载到pandas的DataFrame中?我如何查询数据库中的子文档?

4 个答案:

答案 0 :(得分:22)

在将其传递给DataFrame之前理解从MongoDB获得的光标

import pandas as pd
df = pd.DataFrame(list(tweets.find()))

答案 1 :(得分:15)

如果您在MongoDb中有这样的数据:

[
    {
        "name": "Adam", 
        "age": 27, 
        "address":{
            "number": 4, 
            "street": "Main Road", 
            "city": "Oxford"
        }
     },
     {
        "name": "Steve", 
        "age": 32, 
        "address":{
            "number": 78, 
            "street": "High Street", 
            "city": "Cambridge"
        }
     }
]

您可以将数据直接放入数据框中,如下所示:

from pandas import DataFrame

df = DataFrame(list(db.collection_name.find({}))

你会得到这个输出:

df.head()

|    | name    | age  | address                                                   |
|----|---------|------|-----------------------------------------------------------|
| 1  | "Steve" | 27   | {"number": 4, "street": "Main Road", "city": "Oxford"}    | 
| 2  | "Adam"  | 32   | {"number": 78, "street": "High St", "city": "Cambridge"}  |

然而,子文档将在子文档单元格中显示为JSON。如果要展平对象以使子文档属性显示为单个单元格,则可以使用json_normalize而不使用任何参数。

from pandas.io.json import json_normalize

datapoints = list(db.collection_name.find({})

df = json_normalize(datapoints)

df.head()

这将以这种格式提供数据框:

|    | name   | age  | address.number | address.street | address.city |
|----|--------|------|----------------|----------------|--------------|
| 1  | Thomas | 27   |     4          | "Main Road"    | "Oxford"     |
| 2  | Mary   | 32   |     78         | "High St"      | "Cambridge"  |

答案 2 :(得分:3)

您可以使用此代码将MongoDB数据加载到pandas DataFrame。这个对我有用。也希望你。

import pymongo
import pandas as pd
from pymongo import Connection
connection = Connection()
db = connection.database_name
input_data = db.collection_name
data = pd.DataFrame(list(input_data.find()))

答案 3 :(得分:1)

使用: df = pd.DataFrame.from_dict(collection)