我正在尝试总结家庭调查中的数据,因此我的大多数数据都是分类(因子)数据。我希望用某些问题的回答频率来总结它(例如,回答某些问题的家庭百分比的条形图,误差条显示置信区间)。我发现这个优秀的教程我认为是我祷告的答案(http://www.cookbook-r.com/Manipulating_data/Summarizing_data/)但事实证明这只会对连续数据有所帮助。
我需要的是类似的东西,这将允许我计算这些比例的计数和标准误差/置信区间的比例。
基本上我希望能够为我的调查数据中提出的每个问题生成如下所示的汇总表:
# X5employf X5employff N(count) proportion SE of prop. ci of prop
# 1 1 20 0.64516129 ? ?
# 1 2 1 0.03225806 ? ?
# 1 3 9 0.29032258 ? ?
# 1 NA 1 0.290322581 ? ?
# 2 4 1 0.1 ? ?
structure(list(X5employf = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L), .Label = c("1", "2", "3"), class = "factor"), X5employff = structure(c(1L, 2L, 3L, NA, 4L, 5L, 6L, 7L, 8L, 4L, 5L, 6L, 7L), .Label = c("1", "2", "3", "4", "5", "6", "7", "8"), class = "factor"), count = c(20L, 1L, 9L, 1L, 1L, 5L, 2L, 1L, 1L, 4L, 5L, 4L, 1L)), .Names = c("X5employf", "X5employff", "count"), row.names = c(NA, -13L), class = "data.frame")
然后我想用ggplot(或类似的)绘制条形图,使用这些摘要数据,误差条显示置信区间。
我曾想过修改上面教程中提供的代码来计算上面的列,虽然作为R的相对新手,我正在努力一点!我一直在尝试使用ggply包但在语法上没那么好,所以我设法通过以下代码获得了这个:
> X5employ_props <- ddply(X5employ_counts, .(X5employf), transform, prop=count/sum(count))
但我最终得到了这个:
X5employf X5employff count prop
1 1 1 20 1.0000000
2 1 2 1 1.0000000
3 1 3 9 1.0000000
4 2 4 1 0.2000000
5 3 4 4 0.8000000
6 2 5 5 0.5000000
7 3 5 5 0.5000000
8 2 6 2 0.3333333
9 3 6 4 0.6666667
10 2 7 1 0.5000000
11 3 7 1 0.5000000
12 2 8 1 1.0000000
13 1 <NA> 1 1.0000000
我的所有比例都是1,大概是因为它们是在行而不是列
中计算的我想知道是否有人可以帮助或知道能够为我完成工作的包/代码!
答案 0 :(得分:3)
有很多方法可以计算二项式置信区间,我怀疑对哪种方法最好有很多共识。也就是说,这是使用几种不同方法计算二项式置信区间的一种方法。我不确定这是否有帮助。
library(binom)
x <- c(3, 4, 5, 6, 7)
n <- rep(10, length(x))
binom.confint(x, n, conf.level = 0.95, methods = "all")
method x n mean lower upper
1 agresti-coull 3 10 0.3000000 0.10333842 0.6076747
2 agresti-coull 4 10 0.4000000 0.16711063 0.6883959
3 agresti-coull 5 10 0.5000000 0.23659309 0.7634069
4 agresti-coull 6 10 0.6000000 0.31160407 0.8328894
5 agresti-coull 7 10 0.7000000 0.39232530 0.8966616
6 asymptotic 3 10 0.3000000 0.01597423 0.5840258
7 asymptotic 4 10 0.4000000 0.09636369 0.7036363
8 asymptotic 5 10 0.5000000 0.19010248 0.8098975
9 asymptotic 6 10 0.6000000 0.29636369 0.9036363
10 asymptotic 7 10 0.7000000 0.41597423 0.9840258
11 bayes 3 10 0.3181818 0.09269460 0.6058183
12 bayes 4 10 0.4090909 0.15306710 0.6963205
13 bayes 5 10 0.5000000 0.22352867 0.7764713
14 bayes 6 10 0.5909091 0.30367949 0.8469329
15 bayes 7 10 0.6818182 0.39418168 0.9073054
16 cloglog 3 10 0.3000000 0.07113449 0.5778673
17 cloglog 4 10 0.4000000 0.12269317 0.6702046
18 cloglog 5 10 0.5000000 0.18360559 0.7531741
19 cloglog 6 10 0.6000000 0.25266890 0.8272210
20 cloglog 7 10 0.7000000 0.32871659 0.8919490
21 exact 3 10 0.3000000 0.06673951 0.6524529
22 exact 4 10 0.4000000 0.12155226 0.7376219
23 exact 5 10 0.5000000 0.18708603 0.8129140
24 exact 6 10 0.6000000 0.26237808 0.8784477
25 exact 7 10 0.7000000 0.34754715 0.9332605
26 logit 3 10 0.3000000 0.09976832 0.6236819
27 logit 4 10 0.4000000 0.15834201 0.7025951
28 logit 5 10 0.5000000 0.22450735 0.7754927
29 logit 6 10 0.6000000 0.29740491 0.8416580
30 logit 7 10 0.7000000 0.37631807 0.9002317
31 probit 3 10 0.3000000 0.08991347 0.6150429
32 probit 4 10 0.4000000 0.14933907 0.7028372
33 probit 5 10 0.5000000 0.21863901 0.7813610
34 probit 6 10 0.6000000 0.29716285 0.8506609
35 probit 7 10 0.7000000 0.38495714 0.9100865
36 profile 3 10 0.3000000 0.08470272 0.6065091
37 profile 4 10 0.4000000 0.14570633 0.6999845
38 profile 5 10 0.5000000 0.21765974 0.7823403
39 profile 6 10 0.6000000 0.30001552 0.8542937
40 profile 7 10 0.7000000 0.39349089 0.9152973
41 lrt 3 10 0.3000000 0.08458545 0.6065389
42 lrt 4 10 0.4000000 0.14564246 0.7000216
43 lrt 5 10 0.5000000 0.21762124 0.7823788
44 lrt 6 10 0.6000000 0.29997837 0.8543575
45 lrt 7 10 0.7000000 0.39346107 0.9154146
46 prop.test 3 10 0.3000000 0.08094782 0.6463293
47 prop.test 4 10 0.4000000 0.13693056 0.7263303
48 prop.test 5 10 0.5000000 0.20142297 0.7985770
49 prop.test 6 10 0.6000000 0.27366969 0.8630694
50 prop.test 7 10 0.7000000 0.35367072 0.9190522
51 wilson 3 10 0.3000000 0.10779127 0.6032219
52 wilson 4 10 0.4000000 0.16818033 0.6873262
53 wilson 5 10 0.5000000 0.23659309 0.7634069
54 wilson 6 10 0.6000000 0.31267377 0.8318197
55 wilson 7 10 0.7000000 0.39677815 0.8922087
我不完全确定你想要什么,但这里有代码来创建一个我认为包含你所有参数的表。我使用Agresti-Coull方法从Package binom
挖出代码。
conf.level <- 0.95
x <- c( 4, 5, 6) # successes
n <- c(10,10,10) # trials
method <- 'ac'
# source code from package binom:
xn <- data.frame(x = x, n = n)
all.methods <- any(method == "all")
p <- x/n
alpha <- 1 - conf.level
alpha <- rep(alpha, length = length(p))
alpha2 <- 0.5 * alpha
z <- qnorm(1 - alpha2)
z2 <- z * z
res <- NULL
if(any(method %in% c("agresti-coull", "ac")) || all.methods) {
.x <- x + 0.5 * z2
.n <- n + z2
.p <- .x/.n
lcl <- .p - z * sqrt(.p * (1 - .p)/.n)
ucl <- .p + z * sqrt(.p * (1 - .p)/.n)
res.ac <- data.frame(method = rep("agresti-coull", NROW(x)),
xn, mean = p, lower = lcl, upper = ucl)
res <- res.ac
}
SE <- sqrt(.p * (1 - .p)/.n)
SE
这是包含所有数据和参数的表。
my.table <- data.frame(res, SE)
my.table
method x n mean lower upper SE
1 agresti-coull 4 10 0.4 0.1671106 0.6883959 0.1329834
2 agresti-coull 5 10 0.5 0.2365931 0.7634069 0.1343937
3 agresti-coull 6 10 0.6 0.3116041 0.8328894 0.1329834
我还没有检查过这些估算是否符合Agresti书中的任何例子。但是,佛罗里达大学下面的第一个R函数返回与包binom相同的CI估计值。以下来自佛罗里达大学的第二个R函数没有。
http://www.stat.ufl.edu/~aa/cda/R/one-sample/R1/
x <- 4
n <- 10
conflev <- 0.95
addz2ci <- function(x,n,conflev){
z = abs(qnorm((1-conflev)/2))
tr = z^2 #the number of trials added
suc = tr/2 #the number of successes added
ptilde = (x+suc)/(n+tr)
stderr = sqrt(ptilde * (1-ptilde)/(n+tr))
ul = ptilde + z * stderr
ll = ptilde - z * stderr
if(ll < 0) ll = 0
if(ul > 1) ul = 1
c(ll,ul)
}
# Computes the Agresti-Coull CI for x successes out of n trials
# with confidence coefficient conflev.
add4ci <- function(x,n,conflev){
ptilde = (x+2)/(n+4)
z = abs(qnorm((1-conflev)/2))
stderr = sqrt(ptilde * (1-ptilde)/(n+4))
ul = ptilde + z * stderr
ll = ptilde - z * stderr
if(ll < 0) ll = 0
if(ul > 1) ul = 1
c(ll,ul)
}
# Computes the Agresti-Coull `add 4' CI for x successes out of n trials
# with confidence coefficient conflev. Adds 2 successes and
# 4 trials.
另请注意,根据上面的第一个链接,当n 至于你提到的其他软件包,我很少使用它们,但我很确定你可以将上面的代码包含在调用这些软件包的R脚本中。
答案 1 :(得分:2)
这是一种估算多项95%置信区间的方法。
library(MultinomialCI)
x <- c(20,1,9,1)
multinomialCI(x,alpha=0.05,verbose=FALSE)
# [,1] [,2]
# [1,] 0.5161290 0.8322532
# [2,] 0.0000000 0.2193499
# [3,] 0.1612903 0.4774145
# [4,] 0.0000000 0.2193499
我还没有看过源代码,看看如何获取SE。