假设lucene索引包含字段:date,content。 我希望获得昨天的日期所有文档的价值和频率。日期字段是关键字字段。对内容字段进行分析和索引。
请帮我提供示例代码。
答案 0 :(得分:0)
我的解决方案来源如下......
/**
*
*
* @param reader
* @param fromDateTime
* - yyyymmddhhmmss
* @param toDateTime
* - yyyymmddhhmmss
* @return
*/
static public String top10(IndexSearcher searcher, String fromDateTime,
String toDateTime) {
String top10Query = "";
try {
Query query = new TermRangeQuery("tweetDate", new BytesRef(
fromDateTime), new BytesRef(toDateTime), true, false);
final BitSet bits = new BitSet(searcher.getIndexReader().maxDoc());
searcher.search(query, new Collector() {
private int docBase;
@Override
public void setScorer(Scorer scorer) throws IOException {
}
@Override
public void setNextReader(AtomicReaderContext context)
throws IOException {
this.docBase = context.docBase;
}
@Override
public void collect(int doc) throws IOException {
bits.set(doc + docBase);
}
@Override
public boolean acceptsDocsOutOfOrder() {
return false;
}
});
//
Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_43,
EnglishStopWords.getEnglishStopWords());
//
HashMap<String, Long> wordFrequency = new HashMap<>();
for (int wx = 0; wx < bits.length(); ++wx) {
if (bits.get(wx)) {
Document wd = searcher.doc(wx);
//
TokenStream tokenStream = analyzer.tokenStream("temp",
new StringReader(wd.get("content")));
// OffsetAttribute offsetAttribute = tokenStream
// .addAttribute(OffsetAttribute.class);
CharTermAttribute charTermAttribute = tokenStream
.addAttribute(CharTermAttribute.class);
tokenStream.reset();
while (tokenStream.incrementToken()) {
// int startOffset = offsetAttribute.startOffset();
// int endOffset = offsetAttribute.endOffset();
String term = charTermAttribute.toString();
if (term.length() < 2)
continue;
Long wl;
if ((wl = wordFrequency.get(term)) == null)
wordFrequency.put(term, 1L);
else {
wl += 1;
wordFrequency.put(term, wl);
}
}
tokenStream.end();
tokenStream.close();
}
}
analyzer.close();
// sort
List<String> occurterm = new ArrayList<String>();
for (String ws : wordFrequency.keySet()) {
occurterm.add(String.format("%06d\t%s", wordFrequency.get(ws),
ws));
}
Collections.sort(occurterm, Collections.reverseOrder());
// make query string by top 10 words
int topCount = 10;
for (String ws : occurterm) {
if (topCount-- == 0)
break;
String[] tks = ws.split("\\t");
top10Query += tks[1] + " ";
}
top10Query.trim();
} catch (IOException e) {
e.printStackTrace();
} finally {
}
// return top10 word string
return top10Query;
}