圆形熊猫日期时间指数?

时间:2013-07-22 06:25:07

标签: datetime python-2.7 pandas resampling

我正在将多个时间序列表读入pandas dataFrame,并将它们与常见的pandas datetime索引连接在一起。记录时间序列的数据记录器不是100%准确,这使得重新采样非常烦人,因为根据时间是略高于还是低于采样间隔,它将创建NaN并开始使我的系列看起来像一条虚线。这是我的代码

def loaddata(filepaths):
    t1 = time.clock()
    for i in range(len(filepaths)):
        xl = pd.ExcelFile(filepaths[i])
        df = xl.parse(xl.sheet_names[0], header=0, index_col=2, skiprows=[0,2,3,4], parse_dates=True)
        df = df.dropna(axis=1, how='all') 
        df = df.drop(['Decimal Year Day', 'Decimal Year Day.1', 'RECORD'], axis=1)

        if i == 0:
            dfs = df
        else:
            dfs = concat([dfs, df], axis=1)
    t2 = time.clock()
    print "Files loaded into dataframe in %s seconds" %(t2-t1)

files = ["London Lysimeters corrected 5min.xlsx", "London Water Balance 5min.xlsx"]
data = loaddata(files)

以下是索引的概念:

  

data.index

     

class'pandas.tseries.index.DatetimeIndex'>   [2012-08-27 12:05:00.000002,...,2013-07-12 15:10:00.000004]   长度:91910,频率:无,时区:无

将指数四舍五入到最近的分钟是最快和最通用的?

3 个答案:

答案 0 :(得分:6)

这是一个小技巧。日期时间以纳秒为单位(当被视为np.int64时)。 所以在几纳秒内完成几分钟。

In [75]: index = pd.DatetimeIndex([ Timestamp('20120827 12:05:00.002'), Timestamp('20130101 12:05:01'), Timestamp('20130712 15:10:00'), Timestamp('20130712 15:10:00.000004') ])

In [79]: index.values
Out[79]: 
array(['2012-08-27T08:05:00.002000000-0400',
       '2013-01-01T07:05:01.000000000-0500',
       '2013-07-12T11:10:00.000000000-0400',
       '2013-07-12T11:10:00.000004000-0400'], dtype='datetime64[ns]')

In [78]: pd.DatetimeIndex(((index.asi8/(1e9*60)).round()*1e9*60).astype(np.int64)).values
Out[78]: 
array(['2012-08-27T08:05:00.000000000-0400',
       '2013-01-01T07:05:00.000000000-0500',
       '2013-07-12T11:10:00.000000000-0400',
       '2013-07-12T11:10:00.000000000-0400'], dtype='datetime64[ns]')

答案 1 :(得分:4)

Jeff提到的问题4314现已关闭,并且在pandas 0.18.0中为DatetimeIndex,Timestamp,TimedeltaIndex和Timedelta添加了round()方法。现在我们可以做到以下几点:

In[109]: index = pd.DatetimeIndex([pd.Timestamp('20120827 12:05:00.002'), pd.Timestamp('20130101 12:05:01'), pd.Timestamp('20130712 15:10:30'), pd.Timestamp('20130712 15:10:31')])

In[110]: index.values
Out[110]: 
array(['2012-08-27T12:05:00.002000000', '2013-01-01T12:05:01.000000000',
       '2013-07-12T15:10:30.000000000', '2013-07-12T15:10:31.000000000'], dtype='datetime64[ns]')

In[111]: index.round('min')
Out[111]: 
DatetimeIndex(['2012-08-27 12:05:00', '2013-01-01 12:05:00',
               '2013-07-12 15:10:00', '2013-07-12 15:11:00'],
              dtype='datetime64[ns]', freq=None)

round()接受频率参数。列出了here的字符串别名。

答案 2 :(得分:0)

对于数据列; 使用:round_hour(df.Start_time)

def round_hour(x,tt=''):
    if tt=='M':
        return pd.to_datetime(((x.astype('i8')/(1e9*60)).round()*1e9*60).astype(np.int64))
    elif tt=='H':
        return pd.to_datetime(((x.astype('i8')/(1e9*60*60)).round()*1e9*60*60).astype(np.int64))
    else:   
        return pd.to_datetime(((x.astype('i8')/(1e9)).round()*1e9).astype(np.int64))