遗传算法中的轮盘选择

时间:2008-10-07 04:56:18

标签: genetic-algorithm evolutionary-algorithm roulette-wheel-selection

任何人都可以为轮盘选择功能提供一些伪代码吗?我将如何实现这一点:

alt text

我真的不明白如何阅读这个数学符号。我从未接受过任何概率或统计数据。

14 个答案:

答案 0 :(得分:37)

自从我自己完成这项工作已有几年了,但是谷歌上发现了以下伪代码。

for all members of population
    sum += fitness of this individual
end for

for all members of population
    probability = sum of probabilities + (fitness / sum)
    sum of probabilities += probability
end for

loop until new population is full
    do this twice
        number = Random between 0 and 1
        for all members of population
            if number > probability but less than next probability 
                then you have been selected
        end for
    end
    create offspring
end loop

如果您需要更多详细信息,可以找到here来自的网站。

答案 1 :(得分:15)

已经有很多正确的解决方案,但我认为这段代码更清晰。

def select(fs):
    p = random.uniform(0, sum(fs))
    for i, f in enumerate(fs):
        if p <= 0:
            break
        p -= f
    return i

此外,如果累积fs,您可以生成更有效的解决方案。

cfs = [sum(fs[:i+1]) for i in xrange(len(fs))]

def select(cfs):
    return bisect.bisect_left(cfs, random.uniform(0, cfs[-1]))

这既快又简洁,而且代码非常简洁。如果这是您正在使用的语言,则C ++中的STL具有类似的二分算法。

答案 2 :(得分:12)

发布的伪代码包含一些不清楚的元素,它增加了生成后代的复杂性,而不是执行纯粹的选择。这是一个伪代码的简单python实现:

def roulette_select(population, fitnesses, num):
    """ Roulette selection, implemented according to:
        <http://stackoverflow.com/questions/177271/roulette
        -selection-in-genetic-algorithms/177278#177278>
    """
    total_fitness = float(sum(fitnesses))
    rel_fitness = [f/total_fitness for f in fitnesses]
    # Generate probability intervals for each individual
    probs = [sum(rel_fitness[:i+1]) for i in range(len(rel_fitness))]
    # Draw new population
    new_population = []
    for n in xrange(num):
        r = rand()
        for (i, individual) in enumerate(population):
            if r <= probs[i]:
                new_population.append(individual)
                break
    return new_population

答案 3 :(得分:8)

这通过随机接受来称为轮盘赌选择:

/// \param[in] f_max maximum fitness of the population
///
/// \return index of the selected individual
///
/// \note Assuming positive fitness. Greater is better.

unsigned rw_selection(double f_max)
{
  for (;;)
  {
    // Select randomly one of the individuals
    unsigned i(random_individual());

    // The selection is accepted with probability fitness(i) / f_max
    if (uniform_random_01() < fitness(i) / f_max)
      return i;
  }   
}

单次选择所需的平均尝试次数为:

τ= f max / avg(f)

  • f max 是人口的最大适应度
  • avg(f)是平均适合度

τ并不明确依赖于人口中的个体数量(N),但该比率可以随N而变化。

然而,在许多应用中(适应度保持有限且平均适应度不会因为增加N而减小到0)τ不会随着N无限增加,因此此算法的典型复杂度为O(1 )(使用搜索算法的轮盘赌选择具有O(N)或O(log N)复杂度)。

此程序的概率分布确实与传统的轮盘选择相同。

有关详细信息,请参阅:

  • 通过随机接受选择轮盘赌(Adam Liposki,Dorota Lipowska - 2011)

答案 4 :(得分:5)

以下是C中的一些代码:

// Find the sum of fitnesses. The function fitness(i) should 
//return the fitness value   for member i**

float sumFitness = 0.0f;
for (int i=0; i < nmembers; i++)
    sumFitness += fitness(i);

// Get a floating point number in the interval 0.0 ... sumFitness**
float randomNumber = (float(rand() % 10000) / 9999.0f) * sumFitness;

// Translate this number to the corresponding member**
int memberID=0;
float partialSum=0.0f;

while (randomNumber > partialSum)
{
   partialSum += fitness(memberID);
   memberID++;
} 

**// We have just found the member of the population using the roulette algorithm**
**// It is stored in the "memberID" variable**
**// Repeat this procedure as many times to find random members of the population**

答案 5 :(得分:1)

从上面的回答中,我得到了以下内容,这对我来说比答案本身更清晰。

举个例子:

随机(和)::随机(12) 通过对人口进行迭代,我们检查以下内容:random&lt;总和

让我们选择7作为随机数。

Index   |   Fitness |   Sum |   7 < Sum
0       |   2   |   2       |   false
1       |   3   |   5       |   false
2       |   1   |   6       |   false
3       |   4   |   10      |   true
4       |   2   |   12      |   ...

通过这个例子,最合适(指数3)的选择百分比最高(33%);因为随机数只需要落在6-> 10之内,就可以选择它。

    for (unsigned int i=0;i<sets.size();i++) {
        sum += sets[i].eval();
    }       
    double rand = (((double)rand() / (double)RAND_MAX) * sum);
    sum = 0;
    for (unsigned int i=0;i<sets.size();i++) {
        sum += sets[i].eval();
        if (rand < sum) {
            //breed i
            break;
        }
    }

答案 6 :(得分:1)

教授。斯坦福人工智能实验室的Thrun还在他的CS373 of Udacity期间在python中提出了一个快速(呃?)重采样代码。谷歌搜索结果导致以下链接:

http://www.udacity-forums.com/cs373/questions/20194/fast-resampling-algorithm

希望这有帮助

答案 7 :(得分:1)

这是我最近为轮盘选择写的一个紧凑的java实现,希望可以使用。

public static gene rouletteSelection()
{
    float totalScore = 0;
    float runningScore = 0;
    for (gene g : genes)
    {
        totalScore += g.score;
    }

    float rnd = (float) (Math.random() * totalScore);

    for (gene g : genes)
    {   
        if (    rnd>=runningScore &&
                rnd<=runningScore+g.score)
        {
            return g;
        }
        runningScore+=g.score;
    }

    return null;
}

答案 8 :(得分:1)

MatLab中的轮盘赌轮选择:

TotalFitness=sum(Fitness);
    ProbSelection=zeros(PopLength,1);
    CumProb=zeros(PopLength,1);

    for i=1:PopLength
        ProbSelection(i)=Fitness(i)/TotalFitness;
        if i==1
            CumProb(i)=ProbSelection(i);
        else
            CumProb(i)=CumProb(i-1)+ProbSelection(i);
        end
    end

    SelectInd=rand(PopLength,1);

    for i=1:PopLength
        flag=0;
        for j=1:PopLength
            if(CumProb(j)<SelectInd(i) && CumProb(j+1)>=SelectInd(i))
                SelectedPop(i,1:IndLength)=CurrentPop(j+1,1:IndLength);
                flag=1;
                break;
            end
        end
        if(flag==0)
            SelectedPop(i,1:IndLength)=CurrentPop(1,1:IndLength);
        end
    end

答案 9 :(得分:0)

Based on my research ,Here is another implementation in C# if there is a need for it:


//those with higher fitness get selected wit a large probability 
//return-->individuals with highest fitness
        private int RouletteSelection()
        {
            double randomFitness = m_random.NextDouble() * m_totalFitness;
            int idx = -1;
            int mid;
            int first = 0;
            int last = m_populationSize -1;
            mid = (last - first)/2;

            //  ArrayList's BinarySearch is for exact values only
            //  so do this by hand.
            while (idx == -1 && first <= last)
            {
                if (randomFitness < (double)m_fitnessTable[mid])
                {
                    last = mid;
                }
                else if (randomFitness > (double)m_fitnessTable[mid])
                {
                    first = mid;
                }
                mid = (first + last)/2;
                //  lies between i and i+1
                if ((last - first) == 1)
                    idx = last;
            }
            return idx;
        }

答案 10 :(得分:0)

好的,轮盘选择实施有两种方法:常用随机接受

常用算法:

# there will be some amount of repeating organisms here.
mating_pool = []

all_organisms_in_population.each do |organism|
  organism.fitness.times { mating_pool.push(organism) }
end

# [very_fit_organism, very_fit_organism, very_fit_organism, not_so_fit_organism]
return mating_pool.sample #=> random, likely fit, parent!

随机接受算法:

max_fitness_in_population = all_organisms_in_population.sort_by(:fitness)[0]
loop do
  random_parent = all_organisms_in_population.sample
  probability = random_parent.fitness/max_fitness_in_population * 100
  # if random_parent's fitness is 90%,
  # it's very likely that rand(100) is smaller than it.
  if rand(100) < probability
    return random_parent #=> random, likely fit, parent!
  else
    next #=> or let's keep on searching for one.
  end
end

您可以选择其中之一,他们将返回相同的结果。

有用的资源:

http://natureofcode.com/book/chapter-9-the-evolution-of-code - 关于遗传算法的初学者友好且清晰的章节。解释轮盘赌轮选择作为一桶木制字母(你输入的越多 - 选择A,常用算法的机会就越大)。

https://en.wikipedia.org/wiki/Fitness_proportionate_selection - 描述随机接受算法。

答案 11 :(得分:0)

Swift 4 数组扩展实现了加权随机选择,也就是从其元素中进行的轮盘赌选择:

public extension Array where Element == Double {

    /// Consider the elements as weight values and return a weighted random selection by index.
    /// a.k.a Roulette wheel selection.
    func weightedRandomIndex() -> Int {
        var selected: Int = 0
        var total: Double = self[0]

        for i in 1..<self.count { // start at 1
            total += self[i]
            if( Double.random(in: 0...1) <= (self[i] / total)) { selected = i }
        }

        return selected
    }
}

例如,给出两个元素数组:

[0.9, 0.1]

weightedRandomIndex()将在90%的时间内返回零,在10%的时间内返回1。

这是一个更完整的测试:

let weights = [0.1, 0.7, 0.1, 0.1]
var results = [Int:Int]()
let n = 100000
for _ in 0..<n {
    let index = weights.weightedRandomIndex()
    results[index] = results[index, default:0] + 1
}
for (key,val) in results.sorted(by: { a,b in weights[a.key] < weights[b.key] }) {
    print(weights[key], Double(val)/Double(n))
}

输出:

0.1 0.09906
0.1 0.10126
0.1 0.09876
0.7 0.70092

此答案与此处的Andrew Mao的答案基本相同: https://stackoverflow.com/a/15582983/74975

答案 12 :(得分:0)

这是python中的代码。该代码还可以处理Fitness的负值。

from numpy import min, sum, ptp, array 
from numpy.random import uniform 

list_fitness1 = array([-12, -45, 0, 72.1, -32.3])
list_fitness2 = array([0.5, 6.32, 988.2, 1.23])

def get_index_roulette_wheel_selection(list_fitness=None):
    """ It can handle negative also. Make sure your list fitness is 1D-numpy array"""
    scaled_fitness = (list_fitness - min(list_fitness)) / ptp(list_fitness)
    minimized_fitness = 1.0 - scaled_fitness
    total_sum = sum(minimized_fitness)
    r = uniform(low=0, high=total_sum)
    for idx, f in enumerate(minimized_fitness):
        r = r + f
        if r > total_sum:
            return idx

get_index_roulette_wheel_selection(list_fitness1)
get_index_roulette_wheel_selection(list_fitness2)
  1. 确保您的健康列表是一维数字数组
  2. 将适应度列表缩放到[0,1]范围
  3. 将最大问题转换为最小问题1.0-scaled_fitness_list
  4. 随机分配一个介于0和和之间的数字(minimizzed_fitness_list)
  5. 在最小适合度列表中保留添加元素,直到获得大于总和的值
  6. 您可以看到适应度是否较小->在minimumed_fitness中具有较大的值->它具有更大的机会添加和使该值大于总和。

答案 13 :(得分:-1)

我在C#中写了一个版本,我真的在寻找确认它确实是正确的:

(roulette_selector是一个随机数,范围在0.0到1.0之间)

private Individual Select_Roulette(double sum_fitness)
    {
        Individual ret = new Individual();
        bool loop = true;

        while (loop)
        {
            //this will give us a double within the range 0.0 to total fitness
            double slice = roulette_selector.NextDouble() * sum_fitness;

            double curFitness = 0.0;

            foreach (Individual ind in _generation)
            {
                curFitness += ind.Fitness;
                if (curFitness >= slice)
                {
                    loop = false;
                    ret = ind;
                    break;
                }
            }
        }
        return ret;

    }