我们正在开展一项高性能计算项目,该项目使用MPI作为并行计算框架。遗留平台上已经实现了一些算法。我们所做的是将原始串行算法重写为基于MPI的并行版本。
我遇到这个性能问题:当运行基于MPI的并行算法时,多个进程之间存在大量的通信开销。进程间通信包括三个步骤:
我们发现这些通信步骤,特别是序列化/反序列化步骤,花费了大量时间。我们怎么能解决这个性能问题?
顺便说一下,在我们的C ++代码中,我们使用了很多STL,它比C类结构更复杂。
P.S。我现在通过编写代码遍历对象的所有字段并将它们顺序复制到字节数组中来进行此操作(序列化)。
为了演示我在做什么,有一段代码片段。请注意,这只是一个功能构建过程:
sic::GeometryFeature *ptFeature =
(GeometryFeature *) outLayer->getFeature(iFeature);
sic::Geometry* geom = ptFeature->getGeometry();
std::string geomClassName = geom->getClassName();
sic::Geometry* ptGeom = geom;
unsigned char *wkbBuffer = NULL;
OGRGeometry * gtGeom = NULL;
if (geomClassName == "Point") {
ptGeom = new sic::MultiPoint();
((sic::MultiPoint *) ptGeom)->insert(geom);
gtGeom = new OGRMultiPoint();
int wkbSize = ((sic::MultiPoint *) ptGeom)->WkbSize();
wkbBuffer = (unsigned char *) malloc(wkbSize);
((sic::GeometryCollection *) ptGeom)->exportToWkb(sic::wkbNDR,
wkbBuffer, wkbMultiPoint);
}
} else if (...) {
......
}
gtGeom->importFromWkb(wkbBuffer);
free(wkbBuffer);
assert(gtGeom);
OGRFeature * poFeature = OGRFeature::CreateFeature(
poLayer->GetLayerDefn());
poFeature->SetGeometry(gtGeom);
更多关于我在做什么序列化对象:
unsigned char *bytes = (unsigned char *) malloc(size);
size_t offset = 0;
size_t type_size = sizeof(OGRwkbGeometryType);
OGRwkbGeometryType type = layer->GetGeomType();
memcpy(bytes + offset, &type, type_size);
offset += type_size;
size_t count_size = sizeof(int);
int count = layer->GetFeatureCount();
memcpy(bytes + offset, &count, count_size);
offset += count_size;
layer->ResetReading();
for (OGRFeature *feature = layer->GetNextFeature(); feature != NULL;
feature = layer->GetNextFeature()) {
OGRGeometry *geometry = feature->GetGeometryRef();
if (geometry) {
geometry->exportToWkb(wkbNDR, bytes + offset);
offset += geometry->WkbSize();
} else {
(*(int *) (bytes + type_size))--;
}
OGRFeature::DestroyFeature(feature);
}
return bytes;
任何评论将不胜感激。谢谢!
答案 0 :(得分:1)
(Brian的答案提供帮助你使用图书馆...他是一个非常有经验的程序员 - 听起来像是值得一试。)
另外,我看了你的代码 - 有很多临时缓冲区,新/ malloc分配,sizeof
的使用等等。所以我想我会说明一个“快速,简单但很好”的清洁方法这足以让你开始......
首先创建一个二进制流类型,它会影响和隐藏很多低级别的工作:
#include <arpa/inet.h> // for htonl/s, ntoh/s
#include <endian.h> // for htonbe64, if you have it...
#include <iostream>
#include <string>
#include <map>
// support routines - use C++ overloading to polymorphically dispatch htonl/s
// uint64_t hton(uint64_t n) { return htonbe64(n); }
uint32_t hton(uint32_t n) { return htonl(n); }
uint16_t hton(uint16_t n) { return htons(n); }
// there are no "int" versions - this is ugly but effective...
uint32_t hton(int32_t n) { return htonl(n); }
uint16_t hton(int16_t n) { return htons(n); }
// uint64_t ntoh(uint64_t n) { return betoh64(n); }
uint32_t ntoh(uint32_t n) { return ntohl(n); }
uint16_t ntoh(uint16_t n) { return ntohl(n); }
template <typename OStream>
class Binary_OStream : public OStream
{
public:
typedef Binary_OStream This;
This& write(const char* s, std::streamsize n)
{
OStream::write(s, n);
return *this;
}
template <typename T>
This& rawwrite(const T& t)
{
static_cast<OStream&>(*this) << '[' << sizeof t << ']';
return write((const char*)&t, sizeof t);
}
template <typename T>
This& hton(T h)
{
T n = ::hton(h);
return rawwrite(n);
}
// conversions for inbuilt & Standard-library types...
friend This& operator<<(This& bs, bool x) { return bs << (x ? 'T' : 'F'); }
friend This& operator<<(This& bs, int8_t x) { return bs << x; }
friend This& operator<<(This& bs, uint8_t x) { return bs << x; }
friend This& operator<<(This& bs, int16_t x) { return bs.hton(x); }
friend This& operator<<(This& bs, uint16_t x) { return bs.hton(x); }
friend This& operator<<(This& bs, int32_t x) { return bs.hton(x); }
friend This& operator<<(This& bs, uint32_t x) { return bs.hton(x); }
friend This& operator<<(This& bs, double d) { return bs.rawwrite(d); }
friend This& operator<<(This& bs, const std::string& x)
{
bs << x.size();
return bs.write(x.data(), x.size());
}
template <typename K, typename V, typename A>
friend This& operator<<(This& bs, const std::map<K, V, A>& m)
{
typedef typename std::map<K, V, A>::const_iterator It;
bs << m.size();
for (It it = m.begin(); it != m.end(); ++it)
bs << it->first << it->second;
return bs;
}
// add any others you want...
};
创建用户定义的二进制可序列化类型......
// for your own objects...
struct Object
{
Object(const std::string& s, double x) : s_(s), x_(x) { }
std::string s_;
double x_;
// specify how you want binary serialisation performed (which fields/order etc)
template <typename T>
friend Binary_OStream<T>& operator<<(Binary_OStream<T>& os, const Object& o)
{
return os << o.s_ << o.x_;
}
};
使用示例:
#include <iomanip>
#include <sstream>
// support routines just to help you observe/debug the serialisation...
std::string printable(char c)
{
std::ostringstream oss;
if (isprint(c))
oss << c;
else
oss << "\\x" << std::hex << std::setw(2) << std::setfill('0')
<< (int)(uint8_t)c << std::dec;
return oss.str();
}
std::string printable(const std::string& s)
{
std::string result;
for (std::string::const_iterator i = s.begin(); i != s.end(); ++i)
result += printable(*i);
return result;
}
int main()
{
{
Binary_OStream<std::ostringstream> bs;
Object o("pi", 3.14);
bs << o;
std::cout << "serialised to '" << printable(bs.str()) << "'\n";
}
{
Binary_OStream<std::ostringstream> bs;
std::map<int, std::string> m;
m[0] = "zero";
m[1] = "one";
m[2] = "two";
bs << m;
std::cout << "serialised to '" << printable(bs.str()) << "'\n";
}
}
下一步是创建一个Binary_IStream
- 它与上面非常相似。 (boost
通过使用'%'运算符而不是传统的<<
和>>
来减少工作量,以便相同的函数可以指定用于序列化和反序列化的字段。)
实施说明/想法:
std::ostream&
存储到private
成员变量中,然后将所有流操作发送到该数据成员。
Binary_Stream
个用户可以访问的任何其他ostream
成员函数(更多控制但是单调乏味),或提供(不太方便) /优雅?)Binary_Stream
- 样式访问者。