所以我从http://www.learnopengles.com/android-lesson-one-getting-started/获取代码并且一直试图绘制一个正方形(同时仍然保留其他所有内容)。无论出于何种原因,它都显示为三角形。我的代码将在下面提供。我知道要更改GLES20.glDrawArrays(GLES20.GL_TRIANGLES,0,4),但我找不到我还缺少的其他内容。
此外,有没有更好的方法来了解如何使用GLES20类中的函数? http://developer.android.com/reference/android/opengl/GLES20.html在提供参数方面做得很好,但没有解释每个参数的作用。
我想我的错误是在我的代码的底部,可能是在drawSquare函数中,但是如果我弄错的话,整个文件将被粘贴在这里。
public class LessonOneRenderer implements GLSurfaceView.Renderer
{/**
* Store the model matrix. This matrix is used to move models from object space (where each model can be thought
* of being located at the center of the universe) to world space.
*/
private float[] mModelMatrix = new float[16];
/**
* Store the view matrix. This can be thought of as our camera. This matrix transforms world space to eye space;
* it positions things relative to our eye.
*/
private float[] mViewMatrix = new float[16];
/** Store the projection matrix. This is used to project the scene onto a 2D viewport. */
private float[] mProjectionMatrix = new float[16];
/** Allocate storage for the final combined matrix. This will be passed into the shader program. */
private float[] mMVPMatrix = new float[16];
/** Store our model data in a float buffer. */
private final FloatBuffer mTriangle1Vertices;
private final FloatBuffer mTriangle2Vertices;
private final FloatBuffer mTriangle3Vertices;
private final FloatBuffer mSquare1Vertices;
/** This will be used to pass in the transformation matrix. */
private int mMVPMatrixHandle;
/** This will be used to pass in model position information. */
private int mPositionHandle;
/** This will be used to pass in model color information. */
private int mColorHandle;
/** How many bytes per float. */
private final int mBytesPerFloat = 4;
/** How many elements per vertex. */
private final int mStrideBytes = 7 * mBytesPerFloat;
/** Offset of the position data. */
private final int mPositionOffset = 0;
/** Size of the position data in elements. */
private final int mPositionDataSize = 3;
/** Offset of the color data. */
private final int mColorOffset = 3;
/** Size of the color data in elements. */
private final int mColorDataSize = 4;
/**
* Initialize the model data.
*/
public LessonOneRenderer()
{
// Define points for equilateral triangles.
// This triangle is red, green, and blue.
final float[] triangle1VerticesData = {
// X, Y, Z,
// R, G, B, A
-0.5f, -0.25f, 0.0f,
1.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.25f, 0.0f,
0.0f, 0.0f, 1.0f, 1.0f,
0.0f, 0.559016994f, 0.0f,
0.0f, 1.0f, 0.0f, 1.0f};
// This triangle is yellow, cyan, and magenta.
final float[] triangle2VerticesData = {
// X, Y, Z,
// R, G, B, A
-0.5f, -0.25f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f,
0.5f, -0.25f, 0.0f,
0.0f, 1.0f, 1.0f, 1.0f,
0.0f, 0.559016994f, 0.0f,
1.0f, 0.0f, 1.0f, 1.0f};
// This triangle is white, gray, and black.
final float[] triangle3VerticesData = {
// X, Y, Z,
// R, G, B, A
-0.5f, -0.25f, 0.0f,
1.0f, 1.0f, 1.0f, 1.0f,
0.5f, -0.25f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f,
0.0f, 0.559016994f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f};
final float[] square1VerticesData = {
//topleft
-0.25f, 0.25f, -.5f,
1.0f, 0.0f, 0.0f, 1.0f,
//top right
0.25f,0.25f, -.5f,
0.0f, 1.0f, 0.0f, 1.0f,
//bottom left
-0.25f, -0.25f, -.5f,
1.0f, 0.0f, 0.0f, 1.0f,
//right
0.25f, -0.25f, -.5f,
1.0f, 0.0f, 0.0f, 1.0f};
// Initialize the buffers.
mTriangle1Vertices = ByteBuffer.allocateDirect(triangle1VerticesData.length * mBytesPerFloat)
.order(ByteOrder.nativeOrder()).asFloatBuffer();
mTriangle2Vertices = ByteBuffer.allocateDirect(triangle2VerticesData.length * mBytesPerFloat)
.order(ByteOrder.nativeOrder()).asFloatBuffer();
mTriangle3Vertices = ByteBuffer.allocateDirect(triangle3VerticesData.length * mBytesPerFloat)
.order(ByteOrder.nativeOrder()).asFloatBuffer();
mSquare1Vertices = ByteBuffer.allocateDirect(square1VerticesData.length * mBytesPerFloat)
.order(ByteOrder.nativeOrder()).asFloatBuffer();
mTriangle1Vertices.put(triangle1VerticesData).position(0);
mTriangle2Vertices.put(triangle2VerticesData).position(0);
mTriangle3Vertices.put(triangle3VerticesData).position(0);
mSquare1Vertices.put(square1VerticesData).position(0);
}
@Override
public void onSurfaceCreated(GL10 glUnused, EGLConfig config)
{
// Set the background clear color to gray.
GLES20.glClearColor(0.5f, 0.5f, 0.5f, 0.5f);
// Position the eye behind the origin.
final float eyeX = 0.0f;
final float eyeY = 0.0f;
final float eyeZ = 1.5f;
// We are looking toward the distance
final float lookX = 0.0f;
final float lookY = 0.0f;
final float lookZ = -5.0f;
// Set our up vector. This is where our head would be pointing were we holding the camera.
final float upX = 0.0f;
final float upY = 1.0f;
final float upZ = 0.0f;
// Set the view matrix. This matrix can be said to represent the camera position.
// NOTE: In OpenGL 1, a ModelView matrix is used, which is a combination of a model and
// view matrix. In OpenGL 2, we can keep track of these matrices separately if we choose.
Matrix.setLookAtM(mViewMatrix, 0, eyeX, eyeY, eyeZ, lookX, lookY, lookZ, upX, upY, upZ);
final String vertexShader =
"uniform mat4 u_MVPMatrix; \n" // A constant representing the combined model/view/projection matrix.
+ "attribute vec4 a_Position; \n" // Per-vertex position information we will pass in.
+ "attribute vec4 a_Color; \n" // Per-vertex color information we will pass in.
+ "varying vec4 v_Color; \n" // This will be passed into the fragment shader.
+ "void main() \n" // The entry point for our vertex shader.
+ "{ \n"
+ " v_Color = a_Color; \n" // Pass the color through to the fragment shader.
// It will be interpolated across the triangle.
+ " gl_Position = u_MVPMatrix \n" // gl_Position is a special variable used to store the final position.
+ " * a_Position; \n" // Multiply the vertex by the matrix to get the final point in
+ "} \n"; // normalized screen coordinates.
final String fragmentShader =
"precision mediump float; \n" // Set the default precision to medium. We don't need as high of a
// precision in the fragment shader.
+ "varying vec4 v_Color; \n" // This is the color from the vertex shader interpolated across the
// triangle per fragment.
+ "void main() \n" // The entry point for our fragment shader.
+ "{ \n"
+ " gl_FragColor = v_Color; \n" // Pass the color directly through the pipeline.
+ "} \n";
// Load in the vertex shader.
int vertexShaderHandle = GLES20.glCreateShader(GLES20.GL_VERTEX_SHADER);
if (vertexShaderHandle != 0)
{
// Pass in the shader source.
GLES20.glShaderSource(vertexShaderHandle, vertexShader);
// Compile the shader.
GLES20.glCompileShader(vertexShaderHandle);
// Get the compilation status.
final int[] compileStatus = new int[1];
GLES20.glGetShaderiv(vertexShaderHandle, GLES20.GL_COMPILE_STATUS, compileStatus, 0);
// If the compilation failed, delete the shader.
if (compileStatus[0] == 0)
{
GLES20.glDeleteShader(vertexShaderHandle);
vertexShaderHandle = 0;
}
}
if (vertexShaderHandle == 0)
{
throw new RuntimeException("Error creating vertex shader.");
}
// Load in the fragment shader shader.
int fragmentShaderHandle = GLES20.glCreateShader(GLES20.GL_FRAGMENT_SHADER);
if (fragmentShaderHandle != 0)
{
// Pass in the shader source.
GLES20.glShaderSource(fragmentShaderHandle, fragmentShader);
// Compile the shader.
GLES20.glCompileShader(fragmentShaderHandle);
// Get the compilation status.
final int[] compileStatus = new int[1];
GLES20.glGetShaderiv(fragmentShaderHandle, GLES20.GL_COMPILE_STATUS, compileStatus, 0);
// If the compilation failed, delete the shader.
if (compileStatus[0] == 0)
{
GLES20.glDeleteShader(fragmentShaderHandle);
fragmentShaderHandle = 0;
}
}
if (fragmentShaderHandle == 0)
{
throw new RuntimeException("Error creating fragment shader.");
}
// Create a program object and store the handle to it.
int programHandle = GLES20.glCreateProgram();
if (programHandle != 0)
{
// Bind the vertex shader to the program.
GLES20.glAttachShader(programHandle, vertexShaderHandle);
// Bind the fragment shader to the program.
GLES20.glAttachShader(programHandle, fragmentShaderHandle);
// Bind attributes
GLES20.glBindAttribLocation(programHandle, 0, "a_Position");
GLES20.glBindAttribLocation(programHandle, 1, "a_Color");
// Link the two shaders together into a program.
GLES20.glLinkProgram(programHandle);
// Get the link status.
final int[] linkStatus = new int[1];
GLES20.glGetProgramiv(programHandle, GLES20.GL_LINK_STATUS, linkStatus, 0);
// If the link failed, delete the program.
if (linkStatus[0] == 0)
{
GLES20.glDeleteProgram(programHandle);
programHandle = 0;
}
}
if (programHandle == 0)
{
throw new RuntimeException("Error creating program.");
}
// Set program handles. These will later be used to pass in values to the program.
mMVPMatrixHandle = GLES20.glGetUniformLocation(programHandle, "u_MVPMatrix");
mPositionHandle = GLES20.glGetAttribLocation(programHandle, "a_Position");
mColorHandle = GLES20.glGetAttribLocation(programHandle, "a_Color");
// Tell OpenGL to use this program when rendering.
GLES20.glUseProgram(programHandle);
}
@Override
public void onSurfaceChanged(GL10 glUnused, int width, int height)
{
// Set the OpenGL viewport to the same size as the surface.
GLES20.glViewport(0, 0, width, height);
// Create a new perspective projection matrix. The height will stay the same
// while the width will vary as per aspect ratio.
final float ratio = (float) width / height;
final float left = -ratio;
final float right = ratio;
final float bottom = -1.0f;
final float top = 1.0f;
final float near = 1.0f;
final float far = 10.0f;
Matrix.frustumM(mProjectionMatrix, 0, left, right, bottom, top, near, far);
}
@Override
public void onDrawFrame(GL10 glUnused)
{
GLES20.glClear(GLES20.GL_DEPTH_BUFFER_BIT | GLES20.GL_COLOR_BUFFER_BIT);
// Do a complete rotation every 10 seconds.
long time = SystemClock.uptimeMillis() % 10000L;
float angleInDegrees = (360.0f / 10000.0f) * ((int) time);
// Draw the triangle facing straight on.
Matrix.setIdentityM(mModelMatrix, 0);
Matrix.rotateM(mModelMatrix, 0, angleInDegrees, 0.0f, 0.0f, 1.0f);
drawTriangle(mTriangle1Vertices);
// Draw one translated a bit down and rotated to be flat on the ground.
Matrix.setIdentityM(mModelMatrix, 0);
Matrix.translateM(mModelMatrix, 0, 0.0f, -1.0f, 0.0f);
Matrix.rotateM(mModelMatrix, 0, 90.0f, 1.0f, 0.0f, 0.0f);
Matrix.rotateM(mModelMatrix, 0, angleInDegrees, 0.0f, 0.0f, 1.0f);
drawTriangle(mTriangle2Vertices);
// Draw one translated a bit to the right and rotated to be facing to the left.
Matrix.setIdentityM(mModelMatrix, 0);
Matrix.translateM(mModelMatrix, 0, 1.0f, 0.0f, 0.0f);
Matrix.rotateM(mModelMatrix, 0, 90.0f, 0.0f, 1.0f, 0.0f);
Matrix.rotateM(mModelMatrix, 0, angleInDegrees, 0.0f, 0.0f, 1.0f);
drawTriangle(mTriangle3Vertices);
// Draw square facing strait on
float smallerAngle = -angleInDegrees;
Matrix.setIdentityM(mModelMatrix, 0);
Matrix.translateM(mModelMatrix, 0, 0, 0, 0.0f);
Matrix.rotateM(mModelMatrix, 0, smallerAngle, 0.0f, 0.0f, 1.0f);
drawSquare(mSquare1Vertices);
}
/**
* Draws a triangle from the given vertex data.
*
* @param aTriangleBuffer The buffer containing the vertex data.
*/
private void drawTriangle(final FloatBuffer aTriangleBuffer)
{
// Pass in the position information
aTriangleBuffer.position(mPositionOffset);
GLES20.glVertexAttribPointer(mPositionHandle, mPositionDataSize, GLES20.GL_FLOAT, false,
mStrideBytes, aTriangleBuffer);
GLES20.glEnableVertexAttribArray(mPositionHandle);
// Pass in the color information
aTriangleBuffer.position(mColorOffset);
GLES20.glVertexAttribPointer(mColorHandle, mColorDataSize, GLES20.GL_FLOAT, false,
mStrideBytes, aTriangleBuffer);
GLES20.glEnableVertexAttribArray(mColorHandle);
// This multiplies the view matrix by the model matrix, and stores the result in the MVP matrix
// (which currently contains model * view).
Matrix.multiplyMM(mMVPMatrix, 0, mViewMatrix, 0, mModelMatrix, 0);
// This multiplies the modelview matrix by the projection matrix, and stores the result in the MVP matrix
// (which now contains model * view * projection).
Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mMVPMatrix, 0);
GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mMVPMatrix, 0);
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, 3);
}
private void drawSquare(final FloatBuffer aSquareBuffer) {
// Pass in the position information
aSquareBuffer.position(mPositionOffset);
GLES20.glVertexAttribPointer(mPositionHandle, mPositionDataSize, GLES20.GL_FLOAT, false,
mStrideBytes, aSquareBuffer);
GLES20.glEnableVertexAttribArray(mPositionHandle);
// Pass in the color information
aSquareBuffer.position(mColorOffset);
GLES20.glVertexAttribPointer(mColorHandle, mColorDataSize, GLES20.GL_FLOAT, false,
mStrideBytes, aSquareBuffer);
GLES20.glEnableVertexAttribArray(mColorHandle);
// This multiplies the view matrix by the model matrix, and stores the result in the MVP matrix
// (which currently contains model * view).
Matrix.multiplyMM(mMVPMatrix, 0, mViewMatrix, 0, mModelMatrix, 0);
// This multiplies the modelview matrix by the projection matrix, and stores the result in the MVP matrix
// (which now contains model * view * projection).
Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mMVPMatrix, 0);
GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mMVPMatrix, 0);
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, 4);
}
}
答案 0 :(得分:2)
我假设你是OpenGL ES 2.0编程的新手。因此,在开始使用3.D转换矩阵(例如,用于建模,查看或投影)之前,请先尝试这个基本示例(渲染矩形) -
public class GLES20Renderer implements Renderer {
private int _rectangleProgram;
private int _rectangleAPositionLocation;
private FloatBuffer _rectangleVFB;
public void onSurfaceCreated(GL10 gl, EGLConfig config) {
gl.glClearColor(0.0f, 0.0f, 0.0f, 1);
initShapes();
int _rectangleVertexShader = loadShader(GLES20.GL_VERTEX_SHADER, _rectangleVertexShaderCode);
int _rectangleFragmentShader = loadShader(GLES20.GL_FRAGMENT_SHADER, _rectangleFragmentShaderCode);
_rectangleProgram = GLES20.glCreateProgram();
GLES20.glAttachShader(_rectangleProgram, _rectangleVertexShader);
GLES20.glAttachShader(_rectangleProgram, _rectangleFragmentShader);
GLES20.glLinkProgram(_rectangleProgram);
_rectangleAPositionLocation = GLES20.glGetAttribLocation(_rectangleProgram, "aPosition");
}
public void onSurfaceChanged(GL10 gl, int width, int height) {
gl.glViewport(0, 0, width, height);
}
public void onDrawFrame(GL10 gl) {
gl.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT);
GLES20.glUseProgram(_rectangleProgram);
GLES20.glVertexAttribPointer(_rectangleAPositionLocation, 3, GLES20.GL_FLOAT, false, 12, _rectangleVFB);
GLES20.glEnableVertexAttribArray(_rectangleAPositionLocation);
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, 6);
}
private void initShapes() {
float rectangleVFA[] = {
0, 0, 0,
0, 0.5f, 0,
0.75f, 0.5f, 0,
0.75f, 0.5f, 0,
0.75f, 0, 0,
0, 0, 0,
};
ByteBuffer rectangleVBB = ByteBuffer.allocateDirect(rectangleVFA.length * 4);
rectangleVBB.order(ByteOrder.nativeOrder());
_rectangleVFB = rectangleVBB.asFloatBuffer();
_rectangleVFB.put(rectangleVFA);
_rectangleVFB.position(0);
}
private final String _rectangleVertexShaderCode =
"attribute vec4 aPosition; \n"
+ "void main() { \n"
+ " gl_Position = aPosition; \n"
+ "} \n";
private final String _rectangleFragmentShaderCode =
"void main() { \n"
+ " gl_FragColor = vec4(1,1,1,1); \n"
+ "} \n";
private int loadShader(int type, String source) {
int shader = GLES20.glCreateShader(type);
GLES20.glShaderSource(shader, source);
GLES20.glCompileShader(shader);
return shader;
}
}
答案 1 :(得分:0)
将您的方块定义为两个三角形。我是这样做的(我给你一个没有颜色数据的例子,只有顶点):
final float[] squareCoords = {
//first triangle
-1.0f, 1.0f, 0.0f,
-1.0f, -1.0f, 0.0f,
1.0f, 1.0f, 0.0f,
//second triangle
-1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
1.0f, 1.0f, 0.0f
};
然后,在drawSquare()中使用
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, 6);
它将用方形坐标绘制两个三角形。