我正在做一个我正在建造一辆自动驾驶汽车的项目。到目前为止,我已经整理了图像处理部分以及训练SVM(libSVM)。我从IP摄像头获取视频,但即使使用视频文件,我也遇到了同样的问题。运行几秒钟后,CPU使用率达到100%,帧速率降至1FPS以下。起初我以为它可能是磁盘I / O,但创建了一个ramdisk,问题仍然存在。有人可以帮助我在我的代码中找到问题吗?
#!/usr/bin/env python
import socket
import os
import cv2.cv as cv
import cv as _cv
import numpy
import time
import serial
from subprocess import call
TCP_IP = '192.168.1.101'
TCP_PORT = 23
BUFFER_SIZE = 1
serial = serial.Serial('/dev/ttyACM0',9600)
def run():
prevDirection = 'e'
directions = { 0:'d',
1:'w',
2:'w',
3:'w',
4:'a',
5:'a',
6:'a',
7:'a',
8:'a',
9:'a',
10:'d',
11:'d',
12:'d',
13:'d',
14:'d',
15:'d',
16:'d',
17:'d',
18:'d',
19:'d',
20:'d',
21:'d',
22:'d',
23:'d',
24:'e',
25:'e',
26:'e',
27:'e'
}
vidFile = cv.CaptureFromFile('vvv.mp4')
hist = cv.CreateHist([180], cv.CV_HIST_ARRAY, [(0,180)], 1)
#selection = (270,460,100,20)
selection = (1,1,100,20)
framesToDrop = 5;
while True:
frame = None
frame = cv.QueryFrame(vidFile)
cv.ShowImage("selected", frame)
cv.Smooth(frame, frame, cv.CV_BLUR, 5, 5)
sub = cv.GetSubRect(frame, selection)
cv.ShowImage("selected", sub)
cv.Smooth(sub, sub, cv.CV_BLUR, 5, 5)
_hsv = cv.CreateImage(cv.GetSize(sub), 8, 3)
cv.CvtColor(sub, _hsv, cv.CV_BGR2HSV)
_hue = cv.CreateImage(cv.GetSize(sub), 8, 1)
cv.Split(_hsv, _hue, None, None, None)
# Convert to HSV and keep the hue
hsv = cv.CreateImage(cv.GetSize(frame), 8, 3)
cv.CvtColor(frame, hsv, cv.CV_BGR2HSV)
hue = cv.CreateImage(cv.GetSize(frame), 8, 1)
cv.Split(hsv, hue, None, None, None)
# Compute back projection
backproject = cv.CreateImage(cv.GetSize(frame), 8, 1)
cv.CalcArrBackProject([hue], backproject, hist)
x,y,w,h = selection
cv.Rectangle(frame, (x,y), (x+w,y+h), (255,255,255))
cv.CalcArrHist( [_hue], hist, 0)
(_, max_val, _, _) = cv.GetMinMaxHistValue(hist)
threshold=100
colour=255
cv.Threshold(backproject,backproject, threshold,colour,cv.CV_THRESH_BINARY)
cv.Smooth(backproject, backproject, cv.CV_BLUR, 5, 5)
cv.Dilate(backproject,backproject,None,5)
cv.Smooth(backproject, backproject, cv.CV_BLUR, 5, 5)
cv.Dilate(backproject,backproject,None,5)
cv.Smooth(backproject, backproject, cv.CV_BLUR, 5, 5)
cv.Dilate(backproject,backproject,None,5)
cv.Rectangle(backproject, (0,0), (640,280), cv.RGB(0, 0, 0), -1)
SVMPrediction = predict(backproject)
moveDirection = directions[SVMPrediction]
#sendCommandToCarWifi(moveDirection,prevDirection)
sendCommandToCarSerial(moveDirection,prevDirection)
#print moveDirection
cv.ShowImage("Live", frame)
cv.ShowImage("Backproject", backproject)
c = cv.WaitKey(7) % 0x100
if c == 27:
break
def sendCommandToCarSerial(direction,prevDirection):
serial.write(direction)
def sendCommandToCarWifi(direction,prevDirection):
if(prevDirection != direction):
print'Sent: ' , direction
prevDirection = direction
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((TCP_IP, TCP_PORT))
s.send(direction)
s.close()
return prevDirection
def predict(inputFrame):
resizedImage = cv.CreateImage((40,30),inputFrame.depth, inputFrame.nChannels)
cv.Resize(inputFrame, resizedImage)
createBinary(resizedImage, 0)
trash = os.system('/tmp/ramdisk/svm-predict /tmp/ramdisk/currentImageBinaryData.txt /tmp/ramdisk/currentImageBinaryData.txt.model /tmp/ramdisk/output')
output = open('/tmp/ramdisk/output','r')
result = output.read()
output.close()
return int(result)
def createBinary(image, number):
threshold=100
colour=255
cv.Threshold(image,image, threshold,colour,cv.CV_THRESH_BINARY)
width,height = cv.GetSize(image)
pixelNum = 1
pixelValues = []
for i in range(height):
for j in range(width):
pixel = image[i,j]
value = 2
if(pixel == 0.0):
value = 0
if(pixel == 255.0):
value = 1
temp = ("%s:%s") % (pixelNum, value)
pixelNum += 1
pixelValues.append(temp)
f = open('/tmp/ramdisk/currentImageBinaryData.txt','w')
numberString = ('%d ') % (number)
f.write(numberString)
t = ' '.join(pixelValues)
f.write(t)
f.write(' \n')
f.flush()
f.close()
if __name__=="__main__":
run()
cv.DestroyAllWindows()
答案 0 :(得分:0)
您应该使用CProfile运行代码的配置文件,看看是什么在扼杀您的资源。关于性能分析的官方文档在这里:http://docs.python.org/2/library/profile.html