我有这个数据框:
dput(头(y1,20))
structure(list(time = structure(c(1373256120, 1373256360, 1373256660,
1373256960, 1373257260, 1373257560, 1373257860, 1373258220, 1373258460,
1373258760, 1373259060, 1373259360, 1373259660, 1373259960, 1373260260,
1373260620, 1373260860, 1373261160, 1373261460, 1373261760), class = c("POSIXct",
"POSIXt"), tzone = "America/New_York"), cpu = c(2.5803, 2.7954,
3.0855, 2.6414, 2.4603, 2.2053, 3.2352, 2.2437, 2.0264, 1.9006,
4.331, 2.068, 1.999, 1.8115, 1.8955, 1.7475, 1.8565, 2.1557,
1.9113, 1.3635)), .Names = c("time", "cpu"), row.names = c(NA,
20L), class = "data.frame")
我正在尝试建立一个黄土模型,如下:
ls<-loess(cpu~time, data=y1)
我收到此错误:
Error in simpleLoess(y, x, w, span, degree, parametric, drop.square, normalize, :
NA/NaN/Inf in foreign function call (arg 2)
In addition: Warning message:
In simpleLoess(y, x, w, span, degree, parametric, drop.square, normalize, :
NAs introduced by coercion
我在这里缺少什么?
答案 0 :(得分:5)
您应该将变量转换为数字并确保它们是有限的。
with(y1,{
ok <- is.finite(time) & is.finite(cpu)
x <- as.numeric(time)[ok] ## you reproduce the error without coercion
y <- as.numeric(cpu)[ok]
data <- list(x = x, y = y)
loess( y~x,data = data)
})
loess(formula = y ~ x, data = data)
Number of Observations: 20
Equivalent Number of Parameters: 4.42
Residual Standard Error: 0.6174
使用panel.smoother
中的latticeExtra
,您可以在不进行任何操作的情况下获得结果(它应该在内部完成上述工作)
library(latticeExtra)
xyplot(cpu ~ time ,type='l',data=y1)+
layer(panel.smoother(y ~ x, span = 0.75),style=2)
答案 1 :(得分:0)
使用ggplot()可以很容易地绘制黄土模型。这是geom_smooth()的默认值。所以你甚至不需要计算它,你可以直接绘制它。
df <- data.frame(time = as.numeric(dput$time), cpu = as.numeric(dput$cpu))
ggplot(df, aes(time, cpu)) +
geom_line(aes(colour = "red")) + geom_smooth(aes(colour = "black"))