我有数万个模拟在具有多个核心的系统上运行。目前,它是以串行方式完成的,我知道输入参数,并将结果存储在dict中。
import time
import random
class MyModel(object):
input = None
output = None
def run(self):
time.sleep(random.random()) # simulate a complex task
self.output = self.input * 10
# Run serial tasks and store results for each parameter
parameters = range(10)
results = {}
for p in parameters:
m = MyModel()
m.input = p
m.run()
results[p] = m.output
print('results: ' + str(results))
小于< 10秒,并显示正确的结果:
results: {0: 0, 1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60, 7: 70, 8: 80, 9: 90}
我尝试并行化此过程是基于文本"An example showing how to use queues to feed tasks to a collection of worker processes and collect the results"附近的multiprocessing
模块中的示例(抱歉,没有可用的URL锚点)。
以下内容建立在串行版本的上半部分:
from multiprocessing import Process, Queue
NUMBER_OF_PROCESSES = 4
def worker(input, output):
for args in iter(input.get, 'STOP'):
m = MyModel()
m.input = args[0]
m.run()
output.put(m.output)
# Run parallel tasks and store results for each parameter
parameters = range(10)
results = {}
# Create queues
task_queue = Queue()
done_queue = Queue()
# Submit tasks
tasks = [(t,) for t in parameters]
for task in tasks:
task_queue.put(task)
# Start worker processes
for i in range(NUMBER_OF_PROCESSES):
Process(target=worker, args=(task_queue, done_queue)).start()
# Get unordered results
for i in range(len(tasks)):
results[i] = done_queue.get()
# Tell child processes to stop
for i in range(NUMBER_OF_PROCESSES):
task_queue.put('STOP')
print('results: ' + str(results))
现在只需几秒钟,但输入和结果之间的映射顺序混合在一起。
results: {0: 10, 1: 0, 2: 60, 3: 40, 4: 20, 5: 80, 6: 30, 7: 90, 8: 70, 9: 50}
我意识到我正在根据无序results
填充done_queue.get()
,但我不确定如何将正确的映射到task_queue
。有任何想法吗?还有什么方法可以让它变得更干净吗?
答案 0 :(得分:1)
A-公顷! worker需要嵌入某种ID,例如用于返回输出队列的输入参数,这些ID可用于标识返回的进程。以下是必要的修改:
def worker(input, output):
for args in iter(input.get, 'STOP'):
m = MyModel()
m.input = args[0]
m.run()
# Return a tuple of an ID (the input parameter), and the model output
return_obj = (m.input, m.output)
output.put(return_obj)
和
# Get unordered results
for i in range(len(tasks)):
# Unravel output tuple, which has the input parameter 'p' used as an ID
p, result = done_queue.get()
results[p] = result