我正在尝试使用CUDA进行实时线路检测。我已经计算了霍夫变换以及每个仓的最小,最大线坐标。为了获得我正在跟踪的线段(使用Bresenham的线算法),通过最小值到最大点并获得每个箱子上的线段。当霍夫阈值很低并且图像中有很多行时,trace_lines需要很长时间才能完成。
hough变换(hough_line_transform)计算在GTX 660上每帧大约需要5-10ms(1280x720)(观察到比CPU实现快10倍)。但是从最小值跟踪线段,最大点需要1ms-15ms。
我对线路检测有两个问题
是否有更好的算法从霍夫箱的最小点,最大点获取线段?
是否可以进一步优化hought_line_transform(请参阅下面的代码)?我正在使用原子操作。是否有可能避免原子。
我附上以下代码。
班级标题
#ifndef _HOUGH_LINES_H_
#define _HOUGH_LINES_H_
#include <cuda_gl_interop.h>
#include <thrust/device_vector.h>
union Pos;
struct Line;
struct Hough_params
{
int w;
int h;
int r;
};
class Hough_lines
{
public:
enum Type {INT, SHORT_INT, FLOAT};
Hough_lines(int _w, int _h);
~Hough_lines();
public:
bool init();
bool detect_lines(GLuint tex_edge, int threshold, int min_length, int min_gap, GLuint line, Type type, int& count);
protected:
void get_edges(thrust::device_vector<Pos>& d_coords, int& size);
void get_hough_lines(int threshold, thrust::device_vector<Line>& d_lines, int& size);
void get_lines(int threshold, int min_length, int min_gap, GLuint line, Hough_lines::Type type, int& count);
void trace_all_lines(int min_len, int min_gap, thrust::device_vector<Line>& d_lines, int size, int* d_line_coord, int& count);
static void compute_trig_funcs();
protected:
Hough_params params;
thrust::device_vector<Hough_params> d_param;
static bool trig_init;
};
#endif
体
#include <hough_lines.h>
#include <math.h>
#include <stdio.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <cuda_gl_interop.h>
#include <thrust/host_vector.h>
#include <thrust/copy.h>
#include <thrust/scan.h>
#define ANGLE_SIZE 360
#define MAX_LINE_PER_THREAD 10
union Pos
{
struct
{
uint16_t x;
uint16_t y;
};
uint32_t value;
};
struct Hough_info
{
Pos end;
Pos start;
int count;
};
struct Line
{
Pos start;
Pos end;
};
struct Line_info
{
int line_count;
Line line[MAX_LINE_PER_THREAD];
};
__constant__ float dev_sint[ANGLE_SIZE];
__constant__ float dev_cost[ANGLE_SIZE];
texture<uint8_t, 2, cudaReadModeElementType> luma_tex;
bool Hough_lines::trig_init = false;
__global__ void mark_edges(const Hough_params* param, int* edge)
{
int x = (blockIdx.x*blockDim.x+threadIdx.x);
int y = (blockIdx.y*blockDim.y+threadIdx.y);
int pos = x+(param->w*y);
edge[pos] = (255 == tex2D(luma_tex, x, y))?1:0;
}
__global__ void get_coords(const Hough_params* param, int* edge, Pos* coord)
{
int index;
int x = (blockIdx.x*blockDim.x+threadIdx.x);
int y = (blockIdx.y*blockDim.y+threadIdx.y);
int pos = x+(param->w*y);
if (255 == tex2D(luma_tex, x, y))
{
index = edge[pos];
coord[index].y = y;
coord[index].x = x;
}
}
__global__ void hough_line_transform(const Hough_params* param, int size, const Pos* coord, int threshold, int *mark, Hough_info* out)
{
int i;
int angle;
int rdata;
__shared__ Hough_info sh_rho_data[1001];
i = threadIdx.x;
while (i < param->r)
{
sh_rho_data[i].end.value = 0x0;
sh_rho_data[i].start.value = 0xFFFFFFFF;
sh_rho_data[i].count = 0;
i += blockDim.x;
}
__syncthreads();
i = threadIdx.x;
angle = blockIdx.x;
const float cos_angle = dev_cost[angle];
const float sin_angle = dev_sint[angle];
while (i < size)
{
rdata = (int)ceil(((float)(coord[i].x-(param->w>>1))*cos_angle)+((float)((param->h>>1)-coord[i].y)*sin_angle));
if (rdata >= 0)
{
atomicMax(&sh_rho_data[rdata].end.value, coord[i].value);
atomicMin(&sh_rho_data[rdata].start.value, coord[i].value);
atomicAdd(&sh_rho_data[rdata].count, 1);
}
i += blockDim.x;
}
__syncthreads();
i = threadIdx.x;
rdata = (angle*param->r);
while (i < param->r)
{
memcpy(&out[rdata+i], &sh_rho_data[i], sizeof(Hough_info));
mark[rdata+i] = (sh_rho_data[i].count >= threshold)?1:0;
i += blockDim.x;
}
}
__global__ void get_lines(const Hough_params* param, int threshold, Hough_info* hdata, int* mark, Line* lines)
{
int pos;
int i = threadIdx.x;
int offset = (blockIdx.x*param->r);
while (i < param->r)
{
if (hdata[offset+i].count >= threshold)
{
pos = mark[offset+i];
lines[pos].start.value = hdata[offset+i].start.value;
lines[pos].end.value = hdata[offset+i].end.value;
}
i += blockDim.x;
}
}
__device__ void add_line(int xs, int ys, int xe, int ye, int min_len, Line_info* line)
{
int d = abs(xe-xs)+abs(ye-ys);
if ((d >= min_len) && (line->line_count < MAX_LINE_PER_THREAD))
{
line->line[line->line_count].start.x = xs;
line->line[line->line_count].start.y = ys;
line->line[line->line_count].end.x = xe;
line->line[line->line_count].end.y = ye;
++line->line_count;
//printf("\n(%d %d) (%d %d) %d", xs, ys, xe, ye, d);
}
}
__global__ void trace_lines(const Line* input, int inp_size, int min_len, int min_gap, Line_info* line_info, int* mark)
{
int d;
int dsub;
int dstep;
int xstep;
int ystep;
int xs, ys, xe, ye;
int i = (blockIdx.x*blockDim.x+threadIdx.x);
if (i >= inp_size)
{
return;
}
xs = input[i].start.x;
ys = input[i].start.y;
xe = input[i].end.x;
ye = input[i].end.y;
line_info[i].line_count = 0;
int dx = abs(xe-xs);
int dy = abs(ye-ys);
int xinc = (xe > xs)?1:-1;
int yinc = (ye > ys)?1:-1;
int gap = 0;
bool sflag;
int s_x, s_y, e_x, e_y;
if (dx > dy)
{
dsub = (dx<<1);
dstep = (dy<<1);
d = dstep-dx;
xstep = xinc;
ystep = 0;
xinc = 0;
}
else
{
dsub = (dy<<1);
dstep = (dx<<1);
d = dstep-dy;
xstep = 0;
ystep = yinc;
yinc = 0;
}
sflag = true;
s_x = xs;
s_y = ys;
e_x = xs;
e_y = ys;
int x = xs;
int y = ys;
while ((abs(x-xs) <= dx) && (abs(y-ys) <= dy))
{
x += xstep;
y += ystep;
if (d > 0)
{
x += xinc;
y += yinc;
d -= dsub;
}
d += dstep;
if (255 == tex2D(luma_tex, x, y))
{
e_x = x;
e_y = y;
gap = 0;
if (!sflag)
{
s_x = x;
s_y = y;
sflag = true;
}
}
else if (sflag)
{
++gap;
if (gap >= min_gap)
{
sflag = false;
add_line(s_x, s_y, e_x, e_y, min_len, &line_info[i]);
}
}
}
if (sflag)
{
add_line(s_x, s_y, xe, ye, min_len, &line_info[i]);
}
mark[i] = line_info[i].line_count;
}
__global__ void copy_line_coords(const Hough_params* param, Line_info* line, int size, int* mark, int* coords, int* count)
{
int index = (blockIdx.x*blockDim.x+threadIdx.x);
if (index >= size)
{
return;
}
int pos;
int start = 4*mark[index];
Line* line_data = &line[index].line[0];
for (int i = 0; i < line[index].line_count; i++)
{
pos = start+(4*i);
coords[pos] = line_data[i].start.x-(param->w>>1);
coords[pos+1] = (param->h>>1)-line_data[i].start.y;
coords[pos+2] = line_data[i].end.x-(param->w>>1);
coords[pos+3] = (param->h>>1)-line_data[i].end.y;
}
if ((index+1) == size)
{
*count = mark[index];
}
}
Hough_lines::Hough_lines(int _w, int _h)
:d_param(1)
{
params.w = _w;
params.h = _h;
params.r = (int)ceil(0.5*sqrt((_w*_w)+(_h*_h)));
thrust::copy_n(¶ms, 1, d_param.begin());
}
Hough_lines::~Hough_lines()
{
}
bool Hough_lines::init()
{
if (false == trig_init)
{
trig_init = true;
compute_trig_funcs();
}
return true;
}
void Hough_lines::compute_trig_funcs()
{
float theta;
cudaError_t err = cudaSuccess;
static float sint[ANGLE_SIZE];
static float cost[ANGLE_SIZE];
for (int i = 0; i < ANGLE_SIZE; i++)
{
theta = (M_PI*(float)i)/180.0;
sint[i] = sin(theta);
cost[i] = cos(theta);
}
err = cudaMemcpyToSymbol(dev_sint, sint, ANGLE_SIZE*sizeof(float));
err = (cudaSuccess == err) ? cudaMemcpyToSymbol(dev_cost, cost, ANGLE_SIZE*sizeof(float)):err;
if (cudaSuccess != err)
{
printf("\n%s", cudaGetErrorString(cudaGetLastError()));
}
}
void Hough_lines::get_edges(thrust::device_vector<Pos>& d_coords, int& size)
{
dim3 bsize(16, 16);
dim3 gsize(params.w/bsize.x, params.h/bsize.y);
thrust::device_vector<int> d_mark(params.w*params.h);
size = 0;
mark_edges<<<gsize, bsize>>>(thrust::raw_pointer_cast(d_param.data()),
thrust::raw_pointer_cast(d_mark.data()));
thrust::exclusive_scan(d_mark.begin(), d_mark.end(), d_mark.begin());
get_coords<<<gsize, bsize>>>(thrust::raw_pointer_cast(d_param.data()),
thrust::raw_pointer_cast(d_mark.data()),
thrust::raw_pointer_cast(d_coords.data()));
thrust::copy_n(d_mark.begin()+d_mark.size()-1, 1, &size);
}
void Hough_lines::get_hough_lines(int threshold, thrust::device_vector<Line>& d_lines, int& size)
{
int edge_count = 0;
thrust::device_vector<Pos> d_coords(params.w*params.h);
get_edges(d_coords, edge_count);
thrust::device_vector<int> d_mark(params.r*360);
thrust::device_vector<Hough_info> d_hough_data(params.r*360);
hough_line_transform<<<360, 256>>>(thrust::raw_pointer_cast(d_param.data()),
edge_count,
thrust::raw_pointer_cast(d_coords.data()), threshold,
thrust::raw_pointer_cast(d_mark.data()),
thrust::raw_pointer_cast(d_hough_data.data()));
thrust::exclusive_scan(d_mark.begin(), d_mark.end(), d_mark.begin());
::get_lines<<<360, 256>>>(thrust::raw_pointer_cast(d_param.data()),
threshold,
thrust::raw_pointer_cast(d_hough_data.data()),
thrust::raw_pointer_cast(d_mark.data()),
thrust::raw_pointer_cast(d_lines.data()));
thrust::copy_n(d_mark.begin()+d_mark.size()-1, 1, &size);
}
void Hough_lines::trace_all_lines(int min_len, int min_gap, thrust::device_vector<Line>& d_lines, int size, int* d_line_coord, int& count)
{
thrust::device_vector<int> d_mark_line(size);
thrust::device_vector<Line_info> d_nlines(size);
trace_lines<<<(1+(size/512)), 512>>>(thrust::raw_pointer_cast(d_lines.data()),
size, min_len, min_gap, thrust::raw_pointer_cast(d_nlines.data()),
thrust::raw_pointer_cast(d_mark_line.data()));
thrust::exclusive_scan(d_mark_line.begin(), d_mark_line.end(), d_mark_line.begin());
thrust::device_vector<int> d_count(1);
copy_line_coords<<<(1+(size/512)), 512>>>(thrust::raw_pointer_cast(d_param.data()),
thrust::raw_pointer_cast(d_nlines.data()), size,
thrust::raw_pointer_cast(d_mark_line.data()), d_line_coord,
thrust::raw_pointer_cast(d_count.data()));
thrust::copy(d_count.begin(), d_count.end(), &count);
//printf("\nLine count: %d", count);
}
void Hough_lines::get_lines(int threshold, int min_len, int min_gap, GLuint line, Hough_lines::Type type, int& count)
{
int* d_line_coord = 0;
cudaGLRegisterBufferObject(line);
cudaGLMapBufferObject((void **)&d_line_coord, line);
int size = 0;
thrust::device_vector<Line> d_lines(params.r*360);
get_hough_lines(threshold, d_lines, size);
//printf("\nget_hough_lines: %d", size);
trace_all_lines(min_len, min_gap, d_lines, size, d_line_coord, count);
cudaGLUnmapBufferObject(line);
cudaGLUnregisterBufferObject(line);
}
bool Hough_lines::detect_lines(GLuint tex_edge, int threshold, int min_length, int min_gap, GLuint line, Hough_lines::Type type, int& count)
{
cudaError_t err;
cudaArray* array_edge;
cudaGraphicsResource* res_edge;
err = cudaGraphicsGLRegisterImage(&res_edge, tex_edge, GL_TEXTURE_2D, cudaGraphicsRegisterFlagsReadOnly);
if (err != cudaSuccess)
{
printf("cudaGraphicsGLRegisterImage Failed: %s", cudaGetErrorString(cudaGetLastError()));
exit(0);
}
cudaGraphicsMapResources(1, &res_edge);
cudaChannelFormatDesc chan_desc = cudaCreateChannelDesc<uint8_t>();
err = cudaGraphicsSubResourceGetMappedArray(&array_edge, res_edge, 0, 0);
if (err != cudaSuccess)
{
printf("cudaGraphicsSubResourceGetMappedArray Failed: %s", cudaGetErrorString(cudaGetLastError()));
exit(0);
}
if (cudaBindTextureToArray(&luma_tex, array_edge, &chan_desc) != cudaSuccess)
{
printf("Failed to bind texture - %s\n", cudaGetErrorString(cudaGetLastError()));
exit(0);
}
float time = 0.0;
//static float max = 0.0;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start);
count = 0;
get_lines(threshold, min_length, min_gap, line, type, count);
cudaEventRecord(stop);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
//static int frame = 0;
//frame++;
//if (time > max)
{
//max = time;
printf("\nElpased time: %f ms", time);
}
cudaEventDestroy(start);
cudaEventDestroy(stop);
cudaUnbindTexture(luma_tex);
cudaGraphicsUnmapResources(1, &res_edge);
cudaGraphicsUnregisterResource(res_edge);
return true;
}
答案 0 :(得分:2)
在"Prefix sums and their applications"中,Guy Blelloch描述了使用并行前缀和的并行线绘制算法。参见该论文的第55页,它可能会给你一些想法。
关于如何优化hough_line_transfer
,我认为关键是消除循环中的共享内存原子。在您使用它们的地方,您实际上在进行键控缩减。 Thrust提供reduce_by_key
函数,但只能从主机调用。与Thrust相对应的设备库是CUB,但它没有reduce_by_key
。我已经向CUB作者询问了这里的想法,如果我们提出任何建议,我会更新这个答案。
您可以编写自己的键控缩减,但如果可能的话,依靠库可以提高效率和稳健性。