我希望使用d3.js库实现ggplot2类型的图形以实现交互目的。我喜欢ggplot2,但用户对交互式图表很感兴趣。我一直在探索d3.js库,似乎有很多不同的图形能力,但我真的没有看到任何统计图形,如线性线,预测等。给定散点图,是否也可以添加线性线到曲线图。
我有这个绘制散点图的示例脚本。如何在d3.js中为此图添加线性线?
// data that you want to plot, I've used separate arrays for x and y values
var xdata = [5, 10, 15, 20],
ydata = [3, 17, 4, 6];
// size and margins for the chart
var margin = {top: 20, right: 15, bottom: 60, left: 60}
, width = 960 - margin.left - margin.right
, height = 500 - margin.top - margin.bottom;
// x and y scales, I've used linear here but there are other options
// the scales translate data values to pixel values for you
var x = d3.scale.linear()
.domain([0, d3.max(xdata)]) // the range of the values to plot
.range([ 0, width ]); // the pixel range of the x-axis
var y = d3.scale.linear()
.domain([0, d3.max(ydata)])
.range([ height, 0 ]);
// the chart object, includes all margins
var chart = d3.select('body')
.append('svg:svg')
.attr('width', width + margin.right + margin.left)
.attr('height', height + margin.top + margin.bottom)
.attr('class', 'chart')
// the main object where the chart and axis will be drawn
var main = chart.append('g')
.attr('transform', 'translate(' + margin.left + ',' + margin.top + ')')
.attr('width', width)
.attr('height', height)
.attr('class', 'main')
// draw the x axis
var xAxis = d3.svg.axis()
.scale(x)
.orient('bottom');
main.append('g')
.attr('transform', 'translate(0,' + height + ')')
.attr('class', 'main axis date')
.call(xAxis);
// draw the y axis
var yAxis = d3.svg.axis()
.scale(y)
.orient('left');
main.append('g')
.attr('transform', 'translate(0,0)')
.attr('class', 'main axis date')
.call(yAxis);
// draw the graph object
var g = main.append("svg:g");
g.selectAll("scatter-dots")
.data(ydata) // using the values in the ydata array
.enter().append("svg:circle") // create a new circle for each value
.attr("cy", function (d) { return y(d); } ) // translate y value to a pixel
.attr("cx", function (d,i) { return x(xdata[i]); } ) // translate x value
.attr("r", 10) // radius of circle
.style("opacity", 0.6); // opacity of circle
答案 0 :(得分:6)
要在绘图中添加一行,您需要做的就是将一些行SVG附加到主SVG(chart
)或包含SVG元素的组(main
)
您的代码如下所示:
chart.append('line')
.attr('x1',x(10))
.attr('x2',x(20))
.attr('y1',y(5))
.attr('y2',y(10))
这将从(10,5)到(20,10)画一条线。你可以类似地为你的行创建一个数据集,并附加一大堆数据集。
您可能感兴趣的一件事是SVG路径元素。这对于线而言比一次绘制一个直线段更常见。文档为here.
另一方面,如果您将数据全部创建为一个对象,您可能会发现在d3中使用数据更容易。例如,如果您的数据采用以下格式:
data = [{x: 5, y:3}, {x: 10, y:17}, {x: 15, y:4}, {x: 20, y:6}]
您可以使用:
g.selectAll("scatter-dots")
.data(ydata) // using the values in the ydata array
.enter().append("svg:circle") // create a new circle for each value
.attr("cy", function (d) { return y(d.y); } ) //set y
.attr("cx", function (d,i) { return x(d.x); } ) //set x
如果您的数据变得更复杂,这将消除潜在的混乱索引。
答案 1 :(得分:3)
更新:这是相关的块:https://bl.ocks.org/HarryStevens/be559bed98d662f69e68fc8a7e0ad097
我编写了这个函数来计算数据的线性回归,格式为JSON。
需要5个参数: 1)您的数据 2)在x轴上绘制的数据的列名 3)在y轴上绘制的数据的列名 4)x轴的最小值 5)y轴的最小值
我从http://classroom.synonym.com/calculate-trendline-2709.html
获得了计算线性回归的公式function calcLinear(data, x, y, minX, minY){
/////////
//SLOPE//
/////////
// Let n = the number of data points
var n = data.length;
var pts = [];
data.forEach(function(d,i){
var obj = {};
obj.x = d[x];
obj.y = d[y];
obj.mult = obj.x*obj.y;
pts.push(obj);
});
// Let a equal n times the summation of all x-values multiplied by their corresponding y-values
// Let b equal the sum of all x-values times the sum of all y-values
// Let c equal n times the sum of all squared x-values
// Let d equal the squared sum of all x-values
var sum = 0;
var xSum = 0;
var ySum = 0;
var sumSq = 0;
pts.forEach(function(pt){
sum = sum + pt.mult;
xSum = xSum + pt.x;
ySum = ySum + pt.y;
sumSq = sumSq + (pt.x * pt.x);
});
var a = sum * n;
var b = xSum * ySum;
var c = sumSq * n;
var d = xSum * xSum;
// Plug the values that you calculated for a, b, c, and d into the following equation to calculate the slope
// m = (a - b) / (c - d)
var m = (a - b) / (c - d);
/////////////
//INTERCEPT//
/////////////
// Let e equal the sum of all y-values
var e = ySum;
// Let f equal the slope times the sum of all x-values
var f = m * xSum;
// Plug the values you have calculated for e and f into the following equation for the y-intercept
// y-intercept = b = (e - f) / n = (14.5 - 10.5) / 3 = 1.3
var b = (e - f) / n;
// return an object of two points
// each point is an object with an x and y coordinate
return {
ptA : {
x: minX,
y: m * minX + b
},
ptB : {
y: minY,
x: (minY - b) / m
}
}
}