我一直在努力学习如何使用ggplot2包在R中创建Pareto Chart。在制作条形图或直方图的许多情况下,我们需要按X轴排序的项目。在帕累托图中,我们希望按Y轴中的值降序排序的项目。有没有办法让ggplot绘制由Y轴上的值排序的项目?我首先尝试对数据框进行排序,但似乎ggplot重新排序它们。
示例:
val <- read.csv("http://www.cerebralmastication.com/wp-content/uploads/2009/11/val.txt")
val<-with(val, val[order(-Value), ])
p <- ggplot(val)
p + geom_bar(aes(State, Value, fill=variable), stat = "identity", position="dodge") + scale_fill_brewer(palette = "Set1")
数据帧val已排序,但输出如下所示:
哈德利正确地指出,这会产生一个更好的图形来显示实际与预测的对比:
ggplot(val, aes(State, Value)) + geom_bar(stat = "identity", subset = .(variable == "estimate"), fill = "grey70") + geom_crossbar(aes(ymin = Value, ymax = Value), subset = .(variable == "actual"))
返回:
但它仍然不是帕累托图。有什么提示吗?
答案 0 :(得分:23)
对数据进行子集和排序;
valact <- subset(val, variable=='actual')
valsort <- valact[ order(-valact[,"Value"]),]
从那里它只是一个标准boxplot()
,顶部有一个非常手动的累积功能:
op <- par(mar=c(3,3,3,3))
bp <- barplot(valsort [ , "Value"], ylab="", xlab="", ylim=c(0,1),
names.arg=as.character(valsort[,"State"]), main="How's that?")
lines(bp, cumsum(valsort[,"Value"])/sum(valsort[,"Value"]),
ylim=c(0,1.05), col='red')
axis(4)
box()
par(op)
应该看起来像这样
(来源:eddelbuettel.com)
它甚至不需要过度绘制技巧,因为lines()
愉快地注释了初始情节。
答案 1 :(得分:15)
ggplot2中的条形按因子中的级别顺序排序。
val$State <- with(val, factor(val$State, levels=val[order(-Value), ]$State))
答案 2 :(得分:7)
ggplot2中的传统帕累托图.......
阅读后开发 Cano,E.L。,Moguerza,J.M。,&amp; Redchuk,A。(2012)。 Six Sigma with R.(G。Robert,K。Hornik,&amp; G. Parmigiani,Eds。)Springer。
library(ggplot2);library(grid)
counts <- c(80, 27, 66, 94, 33)
defects <- c("price code", "schedule date", "supplier code", "contact num.", "part num.")
dat <- data.frame(count = counts, defect = defects, stringsAsFactors=FALSE )
dat <- dat[order(dat$count, decreasing=TRUE),]
dat$defect <- factor(dat$defect, levels=dat$defect)
dat$cum <- cumsum(dat$count)
count.sum<-sum(dat$count)
dat$cum_perc<-100*dat$cum/count.sum
p1<-ggplot(dat, aes(x=defect, y=cum_perc, group=1))
p1<-p1 + geom_point(aes(colour=defect), size=4) + geom_path()
p1<-p1+ ggtitle('Pareto Chart')+ theme(axis.ticks.x = element_blank(), axis.title.x = element_blank(),axis.text.x = element_blank())
p1<-p1+theme(legend.position="none")
p2<-ggplot(dat, aes(x=defect, y=count,colour=defect, fill=defect))
p2<- p2 + geom_bar()
p2<-p2+theme(legend.position="none")
plot.new()
grid.newpage()
pushViewport(viewport(layout = grid.layout(2, 1)))
print(p1, vp = viewport(layout.pos.row = 1,layout.pos.col = 1))
print(p2, vp = viewport(layout.pos.row = 2,layout.pos.col = 1))
答案 3 :(得分:4)
举个简单的例子:
> data
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
0.29056 0.23833 0.11003 0.05549 0.04678 0.03788 0.02770 0.02323 0.02211 0.01925
barplot(data)
正确地做事
ggplot等效“应该是”:qplot(x=names(data), y=data, geom='bar')
但是错误地按字母顺序重新排序/排序栏...因为这就是levels(factor(names(data)))
的排序方式。
解决方案:qplot(x=factor(names(data), levels=names(data)), y=data, geom='bar')
呼!
答案 4 :(得分:3)
另外,请参阅包含pareto.chart()
函数的包qcc。看起来它也使用基本图形,所以开始你的ggplot2解决方案的赏金: - )
答案 5 :(得分:1)
为简化起见,我们只考虑估算值。
estimates <- subset(val, variable == "estimate")
首先,我们对因子级别进行重新排序,以便按State
的降序绘制Value
。
estimates$State <- with(estimates, reorder(State, -Value))
同样,我们对数据集重新排序并计算累积值。
estimates <- estimates[order(estimates$Value, decreasing = TRUE),]
estimates$cumulative <- cumsum(estimates$Value)
现在我们准备绘制情节了。在同一轴上获取直线和条的技巧是将State变量(一个因子)转换为数字。
p <- ggplot(estimates, aes(State, Value)) +
geom_bar() +
geom_line(aes(as.numeric(State), cumulative))
p
正如问题所述,试图将两个变量组的两个Pareto图绘制在一起并不容易。如果你想要多个帕累托图,你最好不要使用刻面。
答案 6 :(得分:0)
freqplot = function(x, by = NULL, right = FALSE)
{
if(is.null(by)) stop('Valor de "by" precisa ser especificado.')
breaks = seq(min(x), max(x), by = by )
ecd = ecdf(x)
den = ecd(breaks)
table = table(cut(x, breaks = breaks, right = right))
table = table/sum(table)
intervs = factor(names(table), levels = names(table))
freq = as.numeric(table/sum(table))
acum = as.numeric(cumsum(table))
normalize.vec = function(x){
(x - min(x))/(max(x) - min(x))
}
dados = data.frame(classe = intervs, freq = freq, acum = acum, acum_norm = normalize.vec(acum))
p = ggplot(dados) +
geom_bar(aes(classe, freq, fill = classe), stat = 'identity') +
geom_point(aes(classe, acum_norm, group = '1'), shape = I(1), size = I(3), colour = 'gray20') +
geom_line(aes(classe, acum_norm, group = '1'), colour = I('gray20'))
p
}
答案 7 :(得分:0)
我们可以使用ggQC
软件包。
library(ggplot2)
library(ggQC)
Data4Pareto <- data.frame(
KPI = c("Customer Service Time", "Order Fulfillment", "Order Processing Time",
"Order Production Time", "Order Quality Control Time", "Rework Time",
"Shipping"),
Time = c(1.50, 38.50, 3.75, 23.08, 1.92, 3.58, 73.17))
ggplot2::ggplot(Data4Pareto, aes(x = KPI, y = Time)) +
ggQC::stat_pareto(point.color = "red",
point.size = 3,
line.color = "black",
bars.fill = c("blue", "orange")) +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5))