使用for循环后创建结果矩阵

时间:2013-06-27 19:56:57

标签: r for-loop matrix

我(作为R和编程的绝对初学者)必须用R做我的论文在金融中的一些分析:( 目的是用GBM模拟数据(股票价格)并运行结果2交易策略。在GBM中,我必须“玩”#34;用veriables" r"和" sigma" (每个3个不同的值,因此9个组合)。每个组合需要在T = 10,N = 250的时间段内模拟10000次。对于所有这些模拟,必须应用2个交易策略 - MACD和RSI(在TTR包内)。 现在我遇到了编写代码的问题:(

#Geometrical Brownian Motion
Sim <- GBM(x, r, sigma, T, N)
x <-100
r <-0
sigma <-1
T <- 10
N <- 250

#Additional info for RSI-strategy
retSim <- ROC(Sim)
SimRSI <- RSI(Sim, 14,)
SimRSI[is.na(SimRSI)] <- 0

#Create a vector for the results of the inner loop
portfolio <- rep(0:N)
portfolio[1] <- 100

runs <- 10000

#Creating vectors for final results of portfolio and simulation after 10000 runs (only the last value of each of the 10000 simulations and portfolio results of the strategy required)
resultsSimGBM <- rep(0:runs)
resultsRSIr1sig1 <- rep(0:runs)

#orders
buyRSI<-portfolio[i-1]*exp(retSim[i])
holdRSI<-portfolio[i-1]

#Simulation
portfolio[1]<-100
i <- 1
j <- 1

#Second loop
for(j in 0:runs){

  #Simulation GBM

  x <-100
  r <-0
  sigma <-1
  T <- 10
  N <- 250
  Sim <- GBM(x, r, sigma, T, N)
  retSim <- ROC(Sim)
  SimRSI <- RSI(Sim, 14,)
  SimRSI[is.na(SimRSI)] <- 0
  portfolio[1] <- 100

  #First loop
  for(i in 2:length(Sim)){

    #Apply RSI on GBM
    buyRSI<-portfolio[i-1]*exp(retSim[i])
    holdRSI<-portfolio[i-1]

    if(SimRSI[i-1]<50 && SimRSI[i]>50){portfolio[i]=buyRSI}
    if(SimRSI[i-1]>50 && SimRSI[i]<50){portfolio[i]=holdRSI}
    if(SimRSI[i-1]<50 && SimRSI[i]<50){portfolio[i]=holdRSI}
    if(SimRSI[i-1]>50 && SimRSI[i]>50){portfolio[i]=buyRSI}
    i <- i+1
  }
  resultsRSI[j] <- portfolio[N]
  resultsSimGBM[j] <- Sim[N]
  j <- j+1
}

无论如何,这就是我现在所拥有的,它似乎有效。然而,进入第一个(内部)循环,我还需要包括第二个策略(直到现在,单挑)看起来如下:

#MACD strategy
portfolioMACD[1]<-100
i <- 1
j <- 1

for(j in 0:runs){
  Sim <- BMSim
  retSim <- ROC(Sim)
  SimMACD <- MACD(Sim, 12, 26, 9, myType="EMA")
  DataSimMACD <- data.frame(SimMACD)
  DataSimMACD$macd[is.na(DataSimMACD$macd)] <- 0
  DataSimMACD$signal[is.na(DataSimMACD$signal)] <- 0

for(i in 2:length(Sim)){
  buyMACD<-portfolioMACD[i-1]*exp(retSim[i])
  sellMACD<-portfolioMACD[i-1]
  holdMACD<-portfolioMACD[i-1]*exp(retSim[i])
  if(DataSimMACD$macd[i-1]<DataSimMACD$signal[i-1] && DataSimMACD$macd[i]>DataSimMACD$signal[i]){portfolioMACD[i]=buyMACD}
  if(DataSimMACD$macd[i-1]>DataSimMACD$signal[i-1] && DataSimMACD$macd[i]<DataSimMACD$signal[i]){portfolioMACD[i]=sellMACD}
  if(DataSimMACD$macd[i-1]>DataSimMACD$signal[i-1] && DataSimMACD$macd[i]>DataSimMACD$signal[i]){portfolioMACD[i]=holdMACD}
  if(DataSimMACD$macd[i-1]<DataSimMACD$signal[i-1] && DataSimMACD$macd[i]<DataSimMACD$signal[i]){portfolioMACD[i]=sellMACD}
  if(DataSimMACD$macd[i]==DataSimMACD$signal[i]){portfolioMACD[i]=sellMACD}
  if(DataSimMACD$macd[i-1]==DataSimMACD$signal[i-1] && DataSimMACD$macd[i]!=DataSimMACD$signal[i]){portfolioMACD[i]=buyMACD}
  i <- i+1
}
  resultsMACD[j] <- portfolioMACD[length(Sim)]
  j <- j+1
}

基本上: 1-One布朗运动必须包含2500个元素,两个交易策略必须分别应用 2 - 对于变量r和sigma的9种组合(r1sigma1,r1sigma2,r1sigma3,.....,r3sigma3)中的每一种,这个整个过程必须重复10000次(这个我没有包含在我的代码中)然而 - 不知道如何围绕它构建这2个循环...):( 3-endresult应该是10000x27矩阵,其中10000个(运行量)和27个列(9x GBM,RSI,MACD)仅填充每个模拟的第2500个(最终值)(从点1开始) - &gt;怎么做?

SOS!有人可以请你帮忙我这个烂摊子吗?我完全迷失了,这是我的毕业论文 - .-

每一个帮助都会受到高度赞扬和深深的赞赏!

提前致谢并对这篇长篇文章感到抱歉。

来自柏林,安娜的干杯:)

编辑和另一个简化示例

    library(sde)

    #Vectors for results
    Returns <- rep(0:N)
    LogReturns <- rep(0:N)
    Simulation <- rep(0:N)
    ResultsSimulation <- rep(0:runs)
    ResultsReturns <- rep(0:runs)
    ResultsLog <- rep(0:runs)

    runs=50   #how ofthen the Simulation of GBM should be repeated
    i <- 1
    j <- 1

    #second loop
    for(j in 2:runs){
      Simulation <- GBM(x, r, sigma, T, N)
      x=100
      r=0
      sigma=1
      T=1
      N=20

    #first loop
      for(i in 2:length(BM)){
        Returns <- ROC(Simulation)
        LogReturns[i+1] <- log(Simulation[i+1]/Simulation[i])

        i <- i+1
      }
      ResultsSimulation[j]<-Simulation[N]
      ResultsReturns[j]<-Returns[N]
      ResultsLog[j]<-LogReturns[N]

      j <- j+1
    }

ResultsMatrix <- as.matrix(data.frame(ResultsSimulation, ResultsReturns, ResultsLog))

这个例子的结构基本上就是我所拥有的。我需要围绕它构建另外2个循环,这些循环将对3个不同的&#34; r&#34;进行相同的模拟和计算。价值和&#34; sigma&#34;值(GBM函数中的变量)。结果(每个模拟的最终值和来自第一个循环的计算)应保存在单独的矢量中或由包含这些矢量的矩阵中保存。因此,27个长度为50的背心(变量r和sigma的每个组合有3个结果) 例如,如果sigma = 0.1; 0.3; 0,6和r = 0,03; 0,05; 0,08

如何围绕它构建这些循环并相应地保存数据?

对不起有问题的人,但我真的输了:(

欢呼并多多提前感谢!至少阅读;)

1 个答案:

答案 0 :(得分:1)

这接近你需要的吗?如果是这样,您可以添加新的交易函数来返回投资组合,然后只需调用它(参见示例):

警告:使用N_SIMS = 100000运行大约需要1.5小时!

get.simulation.GBM = function(TIME = 10, N = 250, N_SIMS = 1000, x0 = 100, sigma = c(0.1, 0.3, 0.6), r = c(0.03, 0.05, 0.08))
{
  require(sde)
  params = expand.grid(sigma = sigma, r = r)

  # pre-allocate matrix
  results = matrix(0, ncol = N_SIMS * nrow(params), nrow = N)

  for (i in 1:nrow(params))
  {
    idx.range =  ((i - 1)*N_SIMS + 1):((i - 1)*N_SIMS + N_SIMS)
    temp.res = replicate(N_SIMS, GBM(x0, r = params[i, 'r'], sigma = params[i, 'sigma'], T = TIME, N = N - 1 ))
    results[, idx.range] = temp.res
  }

  return(results)
}

apply.MACD = function(serie, nFast = 12, nSlow = 26, nSig = 9, p0 = 100)
{
  require(TTR)
  roc = ROC(serie)
  sim.MACD = MACD(serie, nFast, nSlow, nSig, maType = "EMA")
  portfolio = rep(0, length = length(serie))
  portfolio[1] = p0

  sim.MACD[is.na(sim.MACD)] = 0
  sim.MACD = as.data.frame(sim.MACD)

  for (i in 2:length(serie))
  {
    buy = portfolio[i - 1] * exp(roc[i])
    sell = portfolio[i - 1]
    hold = buy

    if(sim.MACD$macd[i - 1] < sim.MACD$signal[i - 1] && sim.MACD$macd[i] > sim.MACD$signal[i]){portfolio[i] = buy}
    if(sim.MACD$macd[i - 1] > sim.MACD$signal[i - 1] && sim.MACD$macd[i] < sim.MACD$signal[i]){portfolio[i] = sell}
    if(sim.MACD$macd[i - 1] > sim.MACD$signal[i - 1] && sim.MACD$macd[i] > sim.MACD$signal[i]){portfolio[i] = hold}
    if(sim.MACD$macd[i - 1] < sim.MACD$signal[i - 1] && sim.MACD$macd[i] < sim.MACD$signal[i]){portfolio[i] = sell}
    if(sim.MACD$macd[i] == sim.MACD$signal[i]){portfolio[i] = sell}
    if(sim.MACD$macd[i - 1] == sim.MACD$signal[i - 1] && sim.MACD$macd[i] != sim.MACD$signal[i]){portfolio[i] = buy}

  }
  return(portfolio)
}

apply.RSI = function(serie, p0 = 100, n = 14)
{
  require(TTR)
  roc = ROC(serie)
  sim.RSI = RSI(serie, n = n)
  sim.RSI[is.na(sim.RSI)] = 0
  portfolio = rep(0, length = length(serie))
  portfolio[1] = p0

  for (i in 2:length(serie))
  {
    buy = portfolio[i - 1] * exp(roc[i])
    hold = portfolio[i - 1]

    if(sim.RSI[i - 1] < 50 && sim.RSI[i] > 50){portfolio[i] = buy}
    if(sim.RSI[i - 1] > 50 && sim.RSI[i] < 50){portfolio[i] = hold}
    if(sim.RSI[i - 1] < 50 && sim.RSI[i] < 50){portfolio[i] = hold}
    if(sim.RSI[i - 1] > 50 && sim.RSI[i] > 50){portfolio[i] = buy}
  }
  return(portfolio)
}

# Example (this is SLOW)
simulation.matrix = get.simulation.GBM()
portfolio.RSI = apply(simulation.matrix, 2, apply.RSI)
portfolio.MACD = apply(simulation.matrix, 2, apply.MACD)

# if you need only the last values
portfolio.RSI.last = tail(portfolio.RSI, 1)
portfolio.MACD.last = tail(portfolio.MACD, 1)